DOI QR코드

DOI QR Code

Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics

지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석

  • Kim, Jongsung (ICT Convergency and Integration Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jungwoo (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology)
  • 김종성 (한국건설기술연구원 ICT 융합연구소) ;
  • 이정우 (한국건설기술연구원 환경연구소)
  • Received : 2016.06.21
  • Accepted : 2016.10.19
  • Published : 2016.10.31

Abstract

Fusing satellite images and site-specific observations have potential to improve a predictive quality of environmental properties. However, the effect of the utilization of satellite images to predict soil properties in a wetland is still poorly understood. For the reason, block kriging and regression kriging were applied to a natural wetland, Water Conservation Area-2A in Florida, to compare the accuracy improvement of continuous models predicting total phosphorus in soils. Field observations were used to develop the soil total phosphorus prediction models. Additionally, the spectral data and derived indices from Landsat ETM+, which has 30 m spatial resolution, were used as independent variables for the regression kriging model. The block kriging model showed $R^2$ of 0.59 and the regression kriging model showed $R^2$ of 0.49. Although the block kriging performed better than the regession kriging, both models showed similar spatial patterns. Moreover, regression kriging utilizing a Landsat ETM+ image facilitated to capture unique and complex landscape features of the study area.

여러 환경요인을 예측하는데 위성영상과 측정데이터의 접목은 정확도를 향상시킬 수 있는 잠재력을 가지고 있다. 하지만 습지 토양에 포함되어있는 영양염류의 성분 등을 예측함에 있어 위성영상의 활용 효과는 잘 알려져 있지 않다. 따라서, 본 연구에서는 지구통계학 중 블록크리깅과 회귀크리깅을 자연습지인 에버글레이드에 위치한 수자원관리유역의 토양 내 총인 예측에 적용하였다. 토양시료의 측정된 총인농도를 이용하여 블록크리깅을, 측정값 외에 30 m의 공간해상도를 가지고 있는 위성영상인 Landsat ETM+로부터 추출한 스펙트럼 데이터 및 분광지수 등을 독립변인으로 하여 회귀크리깅을 실시한 결과, 블록크리깅의 결정계수는 0.59, 회귀크리깅의 결정계수는 0.49로 나타났다. 측정 자료만을 이용한 블록크리깅의 예측 오차가 위성영상을 이용한 회귀크리깅의 예측 오차보다 더 작았으나, 각각의 방법을 이용하여 총인 농도를 수자원관리유역에 매핑한 결과 두 경우 모두 비슷한 경향을 보였고, 회귀크리깅의 경우 연구대상유역의 독특하고 복잡한 경관요소들을 더욱 잘 표현할 수 있었다.

Keywords

References

  1. Grunwald, S., "What Do We Really Know about the Space-Time Continuum of Soil-Landscapes?," pp. 3-36. In: Grunwald, S., ed. Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics. CRC Press, New York(2006).
  2. Goovaerts, P., Geostatistics for Natural Resources Evaluation, Oxford University Press, New York(1997).
  3. Webster, R. and Oliver, M. A., Geostatistics for Environmental Scientist (Second ed.), John Wiley & Sons Ltd. England(2007).
  4. Schmid, T., Koch, M., DiBlasi, M. and Hagos, M., "Spatial and Spectral Analysis of Soil Surface Properties for an Archaeological area in Aksum, Ethiopia, Applying high and medium Resolution Data," Catena, 75(1), 93-101(2008). https://doi.org/10.1016/j.catena.2008.04.008
  5. Peng, W., Wheeler, D. B., Bell, J. E. and Krusemark, M. G.. "Delineating Patterns of Soil Drainage Class on Bare Soils Using Remote Sensing Analyses," Geoderma, 115, 261-279(2003). https://doi.org/10.1016/S0016-7061(03)00066-1
  6. Vrieling, A., de Jong, S. M., Sterk, G. and Rodrigues, S. C., "Timing of Erosion and Satellite Data: A Multi-resolution Approach to Soil Erosion Risk Mapping," Int. J. Appl. Earth Observation and Geoinformation, 10, 267-281(2008). https://doi.org/10.1016/j.jag.2007.10.009
  7. Selige, T., Bohner, J. and Schmidhalter, U., "High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures," Geoderma, 136, 235-244(2006). https://doi.org/10.1016/j.geoderma.2006.03.050
  8. Mulder, V. L., de Bruin, S., Schaepman, M. E. and Mayr, T. R., "The use of remote sensing in soil and terrain mapping - A review," Geoderma, 162, 1-19(2011). https://doi.org/10.1016/j.geoderma.2010.12.018
  9. Eldeiry, A. A. and Garcia, L. A., "Detecting soil salinity in Alfalfa fields using spatial modeling and remote sensing," Soil Sci. Soc. Am. J., 72, 201-211(2008). https://doi.org/10.2136/sssaj2007.0013
  10. F-Buces, N, Siebe, C., Cram, S. and Palacio, J. L., "Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico," J. Arid Environ., 65, 644-667(2006). https://doi.org/10.1016/j.jaridenv.2005.08.005
  11. Noe, G. B., Childers, D. L. and Jones, R. D., "Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique?," Ecosystems, 4, 603-624(2001). https://doi.org/10.1007/s10021-001-0032-1
  12. Lee, S.-I., "Geostatistical estimation of subsurface contaminant concentration-I. Model development," J. Korean Soc. Environ. Eng., 24(2), 295-302(2002).
  13. Stacey, K. F., Lark, R. M., Whitmore, A. P. and Milne, A. E., "Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil," Geoderma, 135, 107-117(2006). https://doi.org/10.1016/j.geoderma.2005.11.008
  14. DeBusk, W. F., Newman, S., Reddy, K. R., "Spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A," J. Environ. Qual., 30(4), 1438-1446(2001). https://doi.org/10.2134/jeq2001.3041438x
  15. Santra, P., Chopra, U. K. and Chakraborty, D., "Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm," Curr. Sci., 95(7), 937-945(2008).
  16. Rossi, J., Govaerts, A., De Vos, B., Verhist, B., Vervoort, A., Poesen, J., Muys, B. and Deckers, J., "Spatial Structures of soil organic carbon in tropical forests - A case study of Southeasten Tanzania," Catena, 77(1), 19-27(2009). https://doi.org/10.1016/j.catena.2008.12.003
  17. Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F. and MacDonald, L., "Spatial Variability of Measured Soil Properties across Site-Specific Management Zones," Soil Sci. Soc. Am. J., 69, 1572-1579(2005). https://doi.org/10.2136/sssaj2005.0062
  18. Balasumdram, S. K., Husni, M. H. A. and Ahmed, O. H., "Application of Geostatistical Tools to Quantify Spatial Variability of Selected Soil Chemical Properties from a Cultivated Tropical Peat," J. Agronomy, 7(1), 82-87(2008). https://doi.org/10.3923/ja.2008.82.87
  19. Terra, J. A., Shaw, J. N., Reeves, D. W., Raper, R. L., Santen, E. and Mask, P. L., "Soil Carbon Relationships with Terrain attributes, Electrical conductivity, and a Soil survey in a Coastal Plain Landscape," Soil Sci., 169(12), 819-831(2004). https://doi.org/10.1097/00010694-200412000-00001
  20. Chen, J. M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S. G., White, H. P., Hall, R. J., Peddle, D. R., King, D. J., Trofymow, J. A., Swift, E., Van der Sanden, J. and Pellikka, P. K. E., "Derivation and validation of Canada-wide coarseresolution leaf area index maps using high-resolution satellite imagery and ground measurements," Remote Sensing of Environ., 80, 165-184(2002). https://doi.org/10.1016/S0034-4257(01)00300-5
  21. Gitelson, A. A., Kaufman, Y. J. and Merzlyak, M. N., "Use of a green channel in remote sensing of global vegetation from EOS-MODIS," Remote Sensing of Environ., 58, 289-298(1996). https://doi.org/10.1016/S0034-4257(96)00072-7