• 제목/요약/키워드: furnace cooling

검색결과 165건 처리시간 0.029초

냉각판을 이용한 반응고 A356합금의 미세조직 (Microstructure of Semi-solid A356 Alloys made Using Cooling Plate)

  • 엄정필;김득규;윤병은;임수근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.148-159
    • /
    • 1997
  • In this study, microstructure, size of primary $\alpha$, solid fraction and hardness of A356 Al alloy, were investigated. Semi-solid A356 allos were obtained by semi-solid continuous casting apparatus consists of melting furnace, formation apparatus of granular primary $\alpha$ and continuous casting apparatus. Size of promary $\alpha$ and fraction solid were decreased with decreasing temperature, and with increasing volume of cooling water. At the cooling water temperature of 15$^{\circ}C$ and cooling water volume of 18.2$\ell$/min, the sizes of primary $\alpha$ phases were decreased up to 40${\mu}{\textrm}{m}$, and fraction solid was 0.68.

  • PDF

아토마이징 전기로 산화슬래그 잔골재의 물리·화학적 특성 (Physical and Chemical Properties of Atomizing EFOS as Fine Aggregate for Concrete)

  • 김범수;최선미;신상철;박선규;김진만
    • 한국건설순환자원학회논문집
    • /
    • 제11권1호
    • /
    • pp.70-78
    • /
    • 2023
  • 철강산업 부산물인 고로슬래그는 대부분이 콘크리트 혼화재 등으로 재활용되고 있지만, 제강슬래그는 아직까지 뚜렷한 재활용 용도가 마련되지 않고 있다. 특히 제강슬래그는 배출과정에 있어서 다량의 유리석회(Free CaO)를 함유하고 있어, 유리석회에 의한 팽창 붕괴성을 가지고 있기 때문에 콘크리트용 골재로 재활용하기 위해서는 이에 대한 검토가 필요한 실정이다. 최근에는 고온의 액상 제강슬래그를 고압의 압축공기로 분무하여 슬래그를 매우 작은 크기의 입자로 공기 중에 노출시킴으로써 급냉하는 방식인 아토마이징 공정이 개발되어 적용되고 있다. 따라서 이러한 방법으로 배출되는 전기로 산화슬래그 잔골재를 콘크리트용 골재로 사용하기 위해서는 충분한 물리·화학적 검토가 필요하다. 본 연구에서는 국내 E사에서 철강제조 공정의 부산물로 배출되는 전기로 산화슬래그 잔골재를 대상으로 물리·화학적 검토를 실시하였다. 즉, 아토마이징 공정을 통해 생산되는 전기로 산화슬래그 잔골재가 콘크리트용 골재로서 사용 가능한가에 대하여 실험적으로 검토함으로써 향후 전기로 산화슬래그 잔골재의 활용에 기초적인 자료를 제공하고자 한다. 실험결과, 전기로 산화슬래그 잔골재는 대부분의 항목에서 콘크리트용 잔골재의 품질규준을 만족하고 있는 것으로 나타났다.

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향 (Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming)

  • 김남규;박상덕;김병옥;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

SCM440강의 구상화 어닐링조건 최적화 연구 (Optimization of Spheroidizing Annealing Conditions in SCM440 Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.270-279
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and furnace atmosphere on the microstructure and hardeness were determined in SCM440 steel which has been widely used for automotive parts. The well-spheroidized structure and minimum hardness were obtained when the steel was heat-treated at $770^{\circ}C$ for 6 hours, cooled to $720^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $720^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate to the spheroidizing annealing. It was found that a cooling rate of $100^{\circ}C/hr$ was the fastest cooling rate applicable to the SCM440 steel among the four cooling rates used in this study. The microstructure consisted of ferrite and very fine spheroidized cementite when the steel was annealed for 13 hours at $720^{\circ}C$ below $A_{C1}$ temperature. This was caused by the short annealing time and the retarding effect of Cr and Mo on both the dissolution of pearlite to cementite and coarsening of spheroidized cementite. The steel heat treated in air showed the decarburized layer of about $125{\mu}m$ in thickness at the surface.

Filter 조립 자동화 시스템 설계에 관한 연구 (A Study on the Design of Filter Assembly Automation System)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.111-117
    • /
    • 2008
  • An automation process of filter unit is presented for the application of the assembling procedure and dry furnace work. By that automation procedure, it is expected to enhance working environment such as reducing laboring load, harmful gas, and burning scald. Furthermore, this automation process also minimizes via standardization of manufacturing process so that it may increase productivity and reliability. An automation process of filter unit is presented for the application of the assembling procedure and dry furnace work. Filter automation process also gives a good quality and productivity by simplifying to only one line from the complicated process such as filter cutting$\rightarrow$ adhering$\rightarrow$fabricating in a very small space. It is found that a new conceptual design of dry furnace shows the better quality like uniform heat distribution compared to the conventional design. It is also found that the present design gives a better working environment by adding cooling system.

급냉 전기로 산화슬래그 대체율에 따른 무수축 그라우터의 공학적 특성 (Engineering Properties of Non Shrinkage Grouter According to Replacement Ratio of Rapidly Cooled Electric Arc Furnace Oxidizing Slag)

  • 성종현;선정수;홍성록;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.318-320
    • /
    • 2013
  • The spherical bead manufactured by rapidly cooling process shows high density of 3.64g/㎤, high unit volume weight of 2.6kg/l, and high solid volume of 71%. When it applies to the grouter, it is possible to obtain even high fluidity with only a small amount. This study, focusing the grouter using a rapidly-cooled electric arc furnace oxidizing slag(RC-EAFS), deals with the properties of flow and setting time in fresh state, compressive strength and length variation at 1, 3, 7 and 28 curing day in hardened state. As the results, even though the grouter with RC-EAFS shows comparative low strength, it will be possible to development the competitive product due to the properties of increasing flow and low cost.

  • PDF

SM45C강의 구상화 어닐링조건 최적화 연구 (Optimization of Spheroidizing Annealing Conditions in SM45C Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제19권3호
    • /
    • pp.149-155
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and gas atmosphere in the annealing furnace on the microstructure were determined in SM45C steel which has been widely used for automotive parts. The well-developed spheroidized structure and minimum hardness were obtained when the steel was heat-treated 6 hours at $740^{\circ}C$, cooled to $710^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $710^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate in the spheroidizing annealing. It was found that air cooling was the fastest cooling rate applicable to the SM45C steel. The steel heat treated in air showed the decarburized layer of about $110{\mu}m$ in thickness at the surface of the specimen, resulting in serious problems in the quality of the quenched product.

고로 슬래그를 사용한 용융클링커의 광물학적 특성 (Mineral Properties of Molten Clinker with Blast Furnace Slag)

  • 추용식;서성관;임두혁;송훈;이종규;이승호
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.589-594
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620$^{\circ}C$ for molten clinker fabrication. It was found that molten clinker contained alite and belite equivalent to OPC clinker mineral by optical microscope and SEM. The size of alite was 10~50 ${\mu}m$ and that of belite was 20~80 ${\mu}m$. This result thought to be attributed low $Al_2O_3$ content and cooling condition. Interstitial phase increased with blast furnace slag content and gehlenite was formed by the condition of LSF and SM. So raw mix with 27~41% blast furnace slag could be converted into cement clinker by appropriate choice of melting andcooling methods in this study.

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • 한국건축시공학회지
    • /
    • 제11권5호
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.