References
- Abdelalim, A.M.K., Abdel-Aziz, G.E., El-Mohr, M.A.K. and Salama, G.A. (2009), "Effect of elevated fire temperature and cooling regime on the fire resistance of normal and self-compacting concretes", Eng. Res. J., 122, 63-81.
- Al Qadi, A.N. and Al-Zaidyeen, S.M. (2014), "Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures", J. King Saud Univ.-Eng. Sci., 26(1), 33-39. https://doi.org/10.1016/j.jksues.2012.12.002
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Safety J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003
- Balazs, L.G., Lubloy, E. and Mezei, S. (2010), "Potentials in concrete mix design to improve fire resistance", Concrete Struct. Annl. Tech. J.: J. Hungarian Group of FIB, 11, 67-72.
- Bingol, A.F. and Gul, R. (2009), "Effect of elevated temperatures and cooling regimes on normal strength concrete", Fire Mater., 33(2), 79-88. https://doi.org/10.1002/fam.987
- Hertz, K.D. (2003), "Limits of spalling of fire-exposed concrete", Fire Safety J., 38(2), 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6
- Janotka, I. and Nurnbergerova, T. (2005), "Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume", Nucl. Eng. Des., 235(17), 2019-2032. https://doi.org/10.1016/j.nucengdes.2005.05.011
- Mendes, A., Sanjayan, J.G. and Collins, F. (2011), "Effects of slag and cooling method on the progressive deterioration of concrete after exposure to elevated temperatures as in a fire event", Mater. Struct., 44(3), 709-718. https://doi.org/10.1617/s11527-010-9660-2
- Rao, M.S., Yaragal, S.C., Chacko, K.S., Nivedita, G. and Narayan, K.S.B. (2012), "Studies on elevated temperatures and quenching effects on blended concretes", Int. J. Appl. Eng. Tech., 2, 31-38.
- Raamugee, K. (2013), "Strength properties of polypropylene fibre reinforced concrete", Int. J. Inno. Res. Sci. Eng. Tech., 2.
- Rodrigues, J.P., Lain, L. and Correia, A. (2010), "Behaviour of fiber reinforced columns in fire", Compos. Struct., 92, 1263-1268. https://doi.org/10.1016/j.compstruct.2009.10.029
- Schneider, U. (1988), "Concrete at high temperature-A general review", Fire Safety J., 13, 55-68. https://doi.org/10.1016/0379-7112(88)90033-1
- Shihada, S. (2011), "Effect of polypropylene fibers on concrete fire resistance", J. Civil Eng. Manage., 17(2), 259-264. https://doi.org/10.3846/13923730.2011.574454
- Tanacan, L., Ersoy, H.Y. and Arpacioglu, U. (2009), "Effect of high temperature and cooling conditions on aerated concrete properties", Constr. Build. Mater., 23(3), 1240-1248. https://doi.org/10.1016/j.conbuildmat.2008.08.007
- Xiao, J. and Falkner, H. (2006), "On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures", Fire Safety J., 41(2), 115-121. https://doi.org/10.1016/j.firesaf.2005.11.004
- Yaragal, S., Narayan, K.B., Venkataramana, K., Kulkarni, K., Gowda, H.C., Reddy, G.R. and Sharma, A. (2010), "Studies on normal strength concrete cubes subjected to elevated temperatures", J. Struct. Fire Eng., 1(4), 249-262. https://doi.org/10.1260/2040-2317.1.4.249
- Yaragal, S. and Narayan, K. (2012), "Strength characteristics of concrete exposed to elevated temperatures and cooled under different regimes", J. Struct. Fire Eng., 3(4), 301-310. https://doi.org/10.1260/2040-2317.3.4.301
Cited by
- Investigation on the behaviour of ternary blended concrete with scba and sf vol.263, 2017, https://doi.org/10.1088/1757-899X/263/3/032012
- A comparative analysis of sheeting die geometries using numerical simulations vol.5, pp.2, 2020, https://doi.org/10.12989/acd.2020.5.2.111