• Title/Summary/Keyword: fungal taxol

Search Result 10, Processing Time 0.025 seconds

Isolation and Identification of Taxol, an Anticancer Drug from Phyllosticta melochiae Yates, an Endophytic Fungus of Melochia corchorifolia L.

  • Kumaran, Rangarajulu Senthil;Muthumary, Johnpaul;Hur, Byung-Ki
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1246-1253
    • /
    • 2008
  • Phyllosticta melochiae, an endophytic fungus isolated from the healthy leaves of Melochia corchorifolia, was screened for the production of an anticancer drug, taxol on modified liquid medium and potato dextrose broth medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified by high performance liquid chromatography. The maximum amount of fungal taxol production was recorded as $274{\mu}g/L$. The production rate was increased to $5.5{\times}1,000$ fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay. The results designate that the fungal endophyte, P. melochiae is an excellent candidate for an alternate source of taxol supply and can serve as a potential species for genetic engineering to enhance the production of taxol to a higher level.

Taxol Production by an Endophytic Fungus, Fusarium redolens, Isolated from Himalayan Yew

  • Garyali, Sanjog;Kumar, Anil;Reddy, M. Sudhakara
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1372-1380
    • /
    • 2013
  • Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing $66{\mu}g/l$ of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

Systematic Analysis of the Anticancer Agent Taxol-Producing Capacity in Colletotrichum Species and Use of the Species for Taxol Production

  • Choi, Jinhee;Park, Jae Gyu;Ali, Md. Sarafat;Choi, Seong-Jin;Baek, Kwang-Hyun
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • Paclitaxel (taxol) has long been used as a potent anticancer agent for the treatment of many cancers. Ever since the fungal species Taxomyces andreanae was first shown to produce taxol in 1993, many endophytic fungal species have been recognized as taxol accumulators. In this study, we analyzed the taxol-producing capacity of different Colletotrichum spp. to determine the distribution of a taxol biosynthetic gene within this genus. Distribution of the taxadiene synthase (TS) gene, which cyclizes geranylgeranyl diphosphate to produce taxadiene, was analyzed in 12 Colletotrichum spp., of which 8 were found to contain the unique skeletal core structure of paclitaxel. However, distribution of the gene was not limited to closely related species. The production of taxol by Colletotrichum dematium, which causes pepper anthracnose, depended on the method in which the fungus was stored, with the highest production being in samples stored under mineral oil. Based on its distribution among Colletotrichum spp., the TS gene was either integrated into or deleted from the bacterial genome in a species-specific manner. In addition to their taxol-producing capacity, the simple genome structure and easy gene manipulation of these endophytic fungal species make them valuable resources for identifying genes in the taxol biosynthetic pathway.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.

Taxol Produced from Endophytic Fungi Induces Apoptosis in Human Breast, Cervical and Ovarian Cancer Cells

  • Wang, Xin;Wang, Chao;Sun, Yu-Ting;Sun, Chuan-Zhen;Zhang, Yue;Wang, Xiao-Hua;Zhao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.125-131
    • /
    • 2015
  • Currently, taxol is mainly extracted from the bark of yews; however, this method can not meet its increasing demand on the market because yews grow very slowly and are a rare and endangered species belonging to first-level conservation plants. Recently, increasing efforts have been made to develop alternative means of taxol production; microbe fermentation would be a very promising method to increase the production scale of taxol. To determine the activities of the taxol extracted from endophytic fungus N. sylviforme HDFS4-26 in inhibiting the growth and causing the apoptosis of cancer cells, on comparison with the taxol extracted from the bark of yew, we used cellular morphology, cell counting kit (CCK-8) assay, staining (HO33258/PI and Giemsa), DNA agarose gel electrophoresis and flow cytometry (FCM) analyses to determine the apoptosis status of breast cancer MCF-7 cells, cervical cancer HeLa cells and ovarian cancer HO8910 cells. Our results showed that the fungal taxol inhibited the growth of MCF-7, HeLa and HO8910 cells in a dose-and time-dependent manner. IC50 values of fungal taxol for HeLa, MCF-7 and HO8910 cells were $0.1-1.0{\mu}g/ml$, $0.001-0.01{\mu}g/ml$ and $0.01-0.1{\mu}g/ml$, respectively. The fungal taxol induced these tumor cells to undergo apoptosis with typical apoptotic characteristics, including morphological changes for chromatin condensation, chromatin crescent formation, nucleus fragmentation, apoptotic body formation and G2/M cell cycle arrest. The fungal taxol at the $0.01-1.0{\mu}g/ml$ had significant effects of inducing apoptosis between 24-48 h, which was the same as that of taxol extracted from yews. This study offers important information and a new resource for the production of an important anticancer drug by endofungus fermentation.

Molecular and Morphological Characterization of a Taxol-Producing Endophytic Fungus, Gliocladium sp., from Taxus baccata

  • Sreekanth, D.;Sushim, G.K.;Syed, A.;Khan, B.M.;Ahmad, A.
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.151-157
    • /
    • 2011
  • The endophytic fungal populations of different tissues of Taxus baccata grown at high altitudes in West Bengal, India were explored. These isolated fungal populations represented different genera, which were screened for taxol production using immunoassay technique. The culture AAT-TS-$4_1$ that produced taxol was identified as Gliocladium sp. based on its cultural, morphological characteristics, internal transcribed spacer, and 18S rRNA sequence analysis. Kinetics of taxol production as a function of culture growth were investigated.

Production, Purification, and Characterization of Taxol and 10-DABIII from a new Endophytic Fungus Gliocladium sp. Isolated from the Indian Yew Tree, Taxus baccata

  • Sreekanth, D.;Syed, A.;Sarkar, S.;Sarkar, D.;Santhakumari, B.;Ahmad, A.;Khan, M.I.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1342-1347
    • /
    • 2009
  • We have isolated endophytic fungi from the Indian yew tree, Taxus baccata, and then screened for taxol production. Out of the 40 fungal cultures screened, one fungus Gliocladium sp. was found to produce taxol and 10-DABIII (10-deacetyl baccatin III). These compounds were purified by TLC and HPLC and characterized using UV-spectroscopy, ESI-MS, MS/MS, and proton NMR. One liter of Gliocladium sp. culture yielded $10\;{\mu}g$ of taxol and $65\;{\mu}g$ of 10-DABIII. The purified taxol from the fungus showed cytotoxicity towards cancer lines HL-60 (leukemia), A431 (epidermal carcinoma), and MCF-7 (breast cancer).

Screening of Taxol-producing Endophytic Fungi from Ginkgo biloba and Taxus cuspidata in Korea

  • Kim, Soo-Un;Strobel, Gary;Ford, Eugene
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.97-99
    • /
    • 1999
  • Endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea were screened for production of taxol. Eighteen and twelve fungal isolates from G. biloba and T. cuspidata, respectively, were shown to produce immunologically detectable amount of taxol. The highest production of taxol at 260 ng/l was achieved by stationary culture of an Alternaria isolate from G. biloba. The strain also produced unidentified antifungal agent(s) against Pythium ultimum. However, the activity gradually decreased when the strain was stored at $4^{\circ}C$ for 6 months.

  • PDF

A Gene Cluster for the Biosynthesis of Dibenzodioxocinons in the Endophyte Pestalotiopsis microspora, a Taxol Producer

  • Liu, Yanjie;Chen, Longfei;Xie, Qiaohong;Yu, Xi;Duan, Anqing;Lin, Yamin;Xiang, Biyun;Hao, Xiaoran;Chen, Wanwan;Zhu, Xudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1570-1579
    • /
    • 2019
  • The fungal products dibenzodioxocinones promise a novel class of inhibitors against cholesterol ester transfer protein (CEPT). Knowledge as to their biosynthesis is scarce. In this report, we characterized four more dibenzodioxocinones, which along with a previously described member pestalotiollide B, delimit the dominant spectrum of secondary metabolites in P. microspora. Through mRNA-seq profiling in $g{\alpha}1{\Delta}$, a process that halts the production of the dibenzodioxocinones, a gene cluster harboring 21 genes including a polyketide synthase, designated as pks8, was defined. Disruption of genes in the cluster led to loss of the compounds, concluding the anticipated role in the biosynthesis of the chemicals. The biosynthetic route to dibenzodioxocinones was temporarily speculated. This study reveals the genetic basis underlying the biosynthesis of dibenzodioxocinone in fungi, and may facilitate the practice for yield improvement in the drug development arena.