DOI QR코드

DOI QR Code

Taxol Production by an Endophytic Fungus, Fusarium redolens, Isolated from Himalayan Yew

  • Garyali, Sanjog (Department of Biotechnology, Thapar University) ;
  • Kumar, Anil (Department of Biotechnology, Thapar University) ;
  • Reddy, M. Sudhakara (Department of Biotechnology, Thapar University)
  • Received : 2013.05.30
  • Accepted : 2013.06.24
  • Published : 2013.10.28

Abstract

Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing $66{\mu}g/l$ of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

Keywords

References

  1. Barnett HL, Hunter BB. 1998. Illustrated Genera of Imperfect Fungi.$ 4^{th}$Ed. APS Press, St. Paul, Minnesota.
  2. Cardellina JH. 1991. HPLC separation of taxol and cephalomannine. J. Liquid Chromatogr. 14: 659-665. https://doi.org/10.1080/01483919108049278
  3. Coker PS, Radecke J, Guy C, Camper ND. 2003. Potato disc tumour induction assay: a multiple mode of drug action assay. J. Phytomedicine 10: 133-138. https://doi.org/10.1078/094471103321659834
  4. Dai W, Tao W. 2008. Preliminarly study on fermentation conditions of taxol-producing endophytic fungus. Chem. Ind. Eng. Prog. 27: 883-886.
  5. Deng B W, Liu K H, Chen WQ, Ding XW, Xie XC. 2009. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microbiol. Biotechnol. 25: 139-143. https://doi.org/10.1007/s11274-008-9876-2
  6. Gangadevi V, Muthumary J. 2008. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides, Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J. Microbiol. Biotechnol. 24: 717-724. https://doi.org/10.1007/s11274-007-9530-4
  7. Ganley RJ, Brunsfeld SJ, Newcombe G. 2004. A community of unknown, endophytic fungi in western white pine. Proc. Natl. Acad. Sci. USA 101: 10107-10112. https://doi.org/10.1073/pnas.0401513101
  8. Huang Y, Wang J, Li G, Zheng Z, Su W. 2001. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreyagrandis. FEMS Immunol. Med. Microbiol. 31: 163-167. https://doi.org/10.1111/j.1574-695X.2001.tb00513.x
  9. Kumar S, Tamura K, Peterson D, Peterson N, Stecher G, Nei M. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  10. Li CT, Li Y, Wang QJ, Sung CK. 2008. Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J. Med. Biochem. 27: 454-458.
  11. Li J, Hu Y, Chen W, Lin Z. 2006. Identification and pilot study of Taxus endophytic fungi's taxol-producing correlation gene BAPT. Biotech. Bull. S1: 356-371.
  12. Lin X, Lu CH, Huang YJ, Zheng ZH, Su WJ, Shen YM. 2007. Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World J. Microbiol. Biotechnol. 23: 1037-1040. https://doi.org/10.1007/s11274-006-9329-8
  13. Liu K, Ding X, Deng B, Chen W. 2009. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol. 36: 1171-1177. https://doi.org/10.1007/s10295-009-0598-8
  14. Mc Laughlin JL, Rogers LL. 1998. The use of biological assays to evaluate botanicals. Drug Inform. J. 32: 513-524. https://doi.org/10.1177/009286159803200223
  15. Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA. 2002. Needles of white spruce inoculated with rugulosinproducing endophytes contain ruglosin reducing spruce budworm growth rate. Mycol. Res. 106: 471-479. https://doi.org/10.1017/S0953756202005671
  16. Nadeem M , Rikhari HC, Kumar A , Palni LMS, Nandi SK. 2002. Taxol content in the bark of Himalayan Yew in relation to tree age and sex. Phytochemistry 60: 627-631. https://doi.org/10.1016/S0031-9422(02)00115-2
  17. Pandey AK, Reddy MS, Suryanarayanan TS. 2003. ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol. Res. 107: 439-444. https://doi.org/10.1017/S0953756203007494
  18. Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO. 2008. Novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol. 74: 2805-2813. https://doi.org/10.1128/AEM.02769-07
  19. Radman RS, Sheehan KB, Stout RG, Rodriquez R J, Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298: 1581. https://doi.org/10.1126/science.1072191
  20. Stierle A, Strobel GA, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216. https://doi.org/10.1126/science.8097061
  21. Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X. 1996. Taxol from fungal endophytes and issue of biodiversity. J. Ind. Microbiol. 17: 417-423. https://doi.org/10.1007/BF01574772
  22. Strobel G, Yang X, Sears J , Kramer R, Sidhu RS, Hess WM. 1996. Taxol from Pestalopsis microspora, an endophytic fungus from Taxus wallachiana. Microbiology 142: 435-440. https://doi.org/10.1099/13500872-142-2-435
  23. Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/b100918o
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  25. Walker K, Croteau R. 2000. Molecular cloning of 10-deacetylbaccatin III-10-O-acetly transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 583-587. https://doi.org/10.1073/pnas.97.2.583
  26. Walker K, Fujisaki S, Long R, Croteau R. 2002. Molecular cloning and heterologous expression of the C-13 phenyl propanoid side chain-CoA acyltransferase that functions in taxol biosynthesis. Proc. Natl. Acad. Sci. USA 99: 12715-12720. https://doi.org/10.1073/pnas.192463699
  27. Wang J, Li G, Lu H, Zheng Z , Huang Y, Su W. 2000. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 193: 249-253. https://doi.org/10.1111/j.1574-6968.2000.tb09432.x
  28. Wei JC. 1979. Handbook for Identification of Fungi, pp. 405-649. Shanghai Science and Technology Press, Shanghai.
  29. Wheeler N C, Jech K, Masters S , Brobst SW, Alvarado AB, Hoover AJ, et al. 1992. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J. Nat. Prod. 55: 432-440. https://doi.org/10.1021/np50082a005
  30. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). PCR Protocols: A Guide to Methods and Application. Academic Press Inc., San Diego.
  31. Zhang CL, Liu SP, Lin FC, Kubicek CP, Druzhinina IS. 2007. Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol. Lett. 207: 90-96.
  32. Zhang D, Yang Y, Castlebury L A, Cerniglia C E. 1996. A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol. Lett. 145: 261-265. https://doi.org/10.1111/j.1574-6968.1996.tb08587.x
  33. Zhang P, Zhou P, Chen J, Yu H, Yu L. 2008. Screening of taxol-producing fungi based on PCR amplification from Taxus. Biotechnol. Lett. 30: 2119-2123. https://doi.org/10.1007/s10529-008-9801-7
  34. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, et al. 2010. Endophytic fungi for producing bioactive compounds originally from their host plants. Curr. Res. Technol. Education Topics Appl. Microbiol. Microb. Biotechnol. 567-576.
  35. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T , et al. 2009. Aspergillus niger var. taxi, a new species variant of taxolproducing fungus isolated from Taxus cuspidate in China. J. Appl. Microbiol. 107: 1202-1207. https://doi.org/10.1111/j.1365-2672.2009.04305.x
  36. Zhao K, Zhao LF, Jin Y, Wei HX, Ping WX, Zhou DP. 2008. Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 5: 210-217.
  37. Zhou X, Wang Z, Jiang K, Wei Y , Lin J, Sun X , et al. 2007. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl. Biochem. Microbiol. 43: 439-443. https://doi.org/10.1134/S000368380704014X

Cited by

  1. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology vol.32, pp.6, 2013, https://doi.org/10.1016/j.tibtech.2014.03.011
  2. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5040918
  3. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi vol.90, pp.6, 2016, https://doi.org/10.1007/s11103-015-0413-z
  4. Optimization of a broth conductivity controlling strategy directed by an online viable biomass sensor for enhancing Taxus cell growth rate and Taxol productivity vol.6, pp.47, 2013, https://doi.org/10.1039/c5ra26540a
  5. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi vol.7, pp.None, 2013, https://doi.org/10.3389/fmicb.2016.01774
  6. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization vol.6, pp.None, 2016, https://doi.org/10.1038/srep22006
  7. Isolation and characterization of trichalasin-producing endophytic fungus from Taxus baccata vol.67, pp.3, 2013, https://doi.org/10.1007/s13213-017-1256-4
  8. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review vol.9, pp.None, 2013, https://doi.org/10.3389/fphar.2018.00309
  9. Antimicrobial Potential of Fungal Endophytes from Moringa oleifera vol.187, pp.2, 2013, https://doi.org/10.1007/s12010-018-2770-y
  10. Developments in taxol production through endophytic fungal biotechnology: a review vol.19, pp.1, 2019, https://doi.org/10.1007/s13596-018-0352-8
  11. The puzzle of highly virulent Metarhizium anisopliae strains from Annona squamosa fields against Helicoverpa armigera vol.59, pp.4, 2013, https://doi.org/10.1002/jobm.201800631
  12. Host metabolite producing endophytic fungi isolated from Hypericum perforatum vol.14, pp.5, 2013, https://doi.org/10.1371/journal.pone.0217060
  13. Epigenetic Modifier Based Enhancement of Piperine Production in Endophytic Diaporthe sp. PF20 vol.89, pp.2, 2013, https://doi.org/10.1007/s40011-018-0982-0
  14. Functional Fungal Endophytes in Coleus forskohlii Regulate Labdane Diterpene Biosynthesis for Elevated Forskolin Accumulation in Roots vol.78, pp.4, 2013, https://doi.org/10.1007/s00248-019-01376-w
  15. Neuroprotective γ-Pyrones from Fusarium Solani JS-0169: Cell-Based Identification of Active Compounds and an Informatics Approach to Predict the Mechanism of Action vol.10, pp.1, 2013, https://doi.org/10.3390/biom10010091
  16. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites vol.11, pp.1, 2020, https://doi.org/10.1080/21501203.2019.1645053
  17. Bioactivity of Mycoendophytes Isolated from Medicinal Plants Growing in Different Geographical Egyptian Habitats vol.15, pp.2, 2013, https://doi.org/10.5812/jjnpp.64785
  18. Biogenically Synthesized Silver Nanoparticles Using Endophyte Fungal Extract of Ocimum tenuiflorum and Evaluation of Biomedical Properties vol.31, pp.6, 2013, https://doi.org/10.1007/s10876-019-01731-4
  19. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi vol.84, pp.3, 2013, https://doi.org/10.1021/acs.jnatprod.0c01195
  20. Revealing of biodiversity and antimicrobial effects of Artemisia asiatica endophytes vol.64, pp.2, 2013, https://doi.org/10.14232/abs.2020.2.111-119
  21. Bioprospecting and biodiversity investigations of endophytic fungi isolated from Juniperus communis vol.64, pp.2, 2013, https://doi.org/10.14232/abs.2020.2.129-138