• Title/Summary/Keyword: functional glasses

Search Result 17, Processing Time 0.023 seconds

Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis (수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성)

  • Park, H.J.;Kim, Y.S.;Hong, S.H.;Kim, J.T.;Cho, J.Y.;Lee, W.H.;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

Overview and Future Concerns for Recycling Glass Wastes (폐(廢)스마트 유리제품(琉璃製品) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Hong, Hyun Seon;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Glass materials possess unique functional characteristics of ceramics different from those of metals, which has marked glass as one of the mainstay materials in the history of mankind. Nowadays, industrial sophistication necessitates comparable "smart" attributes of glass materials as a significantly advanced form of sophistication. Smart glasses are increasingly applied in many state-of-the-art digital appliances such as displays and semiconductors and waste is also expected to accumulate therefrom in the near future: More than 60,000 tons of smart glass wastes were reported as of 2012, for example. In the present paper, current status of domestic Korean smart glass industry and related recycling enterprise have been comprehensively investigated. Finally, Korean domestic smart glass recycling technology and its future prospect are also briefly presented.

The solution for revitalization of domestic eyeglasses industry (국내 안경산업의 활성화방안 고찰)

  • Kim, Dae-Nyun;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • Most of eyeglasses manufacturers in Korea consist of relatively small-sized enterprises with less than 10 employees. In terms of scale, it performs considerably poor compared to other competing nations like Italy and the People's Republic of China. As a result, domestic eyeglasses industry is facing a difficult position between high-priced products of developed countries and low-priced goods of China, South East Asia, and etc. Considering these factors, the urgent solution for revitalization of domestic eyeglasses industry could be seen as major structural changes in eyeglasses producers. In addition, it is also noted that procurement of competitiveness is an essential scheme to reinvigorate the Korean eyeglasses industry. This objective can be achieved via improvement of ability to develop new designs, exploitation of new material and technology, intensification of own innovative brand and public relations, development of new products such as functional glasses, reduction of sample producing period, provision of administrative support, and designation of special economic zone.

  • PDF

Product Analysis and Development of Amblyopia Eye Patch for Children

  • Lim, Hosun;Sung, Juyoung
    • Fashion, Industry and Education
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • In the present study, the materials, sizes, and designs of blind eye patch products of skin-adhesive type and glass-attachment type currently available in the market will be analyzed and ergonomically appropriate blind eye patches will be developed. Although these skin-adhesive type eye patches were easy to use, they had shortcomings such as skin troubles due to the adhesive used on the weak and sensitive skin of children and the fact that eyebrows are pulled out and the skin is irritated when the eye patches are detached after being attached. The non-adhesive type eye patches were blind patches to be worn by putting into glasses. These products were made using diverse materials such as neoprene, non-woven fabrics, and felt and showed differences in tactile impressions and irritation to the skin depending on material characteristics. In addition, most products were efficient in blocking light with three-dimensional oval designs comprising darts. In the present study, blind eye patches were designed to reduce skin troubles by using sweat-absorbing and quick-drying functional materials with soft tactile impressions. In addition, to increase the effect to block light and the degree of tight contact with the skin when the blind eye patches are worn compared to existing eye patch designs, the sides of the wings of the blind eye patches were widened, glass frame fixing plates were added, and the darts were made to be curved thereby making an ergonomic design reflecting the shape of the face. The non-adhesive type blind eye patches developed in the present study are considered to enhance the wearing sensation with the use of the material without skin irritation but with cushioning feelings and the ergonomic design reflecting the contour of the face.

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young;Park, Sung Hyun;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1256-1261
    • /
    • 2018
  • Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.

f-MRI with Three-Dimensional Visual Stimulation (삼차원 시각 자극을 이용한 f-MRI 연구)

  • Kim C.Y.;Park H.J.;Oh S.J.;Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Purpose : Instead of conventional two-dimensional (2-D) visual stimuli, three-dimensional (3-D) visual stimuli with stereoscopic vision were employed for the study of functional Magnetic Resonance Imaging (f-MRI). In this paper f-MRI with 3-D visual stimuli is investigated in comparison with f-MRI with 2-D visual stimuli. Materials and Methods : The anaglyph which generates stereoscopic vision by viewing color coded images with red-blue glasses is used for 3-D visual stimuli. Two-dimensional visual stimuli are also used for comparison. For healthy volunteers, f-MRI experiments were performed with 2-D and 3-D visual stimuli at 3.0 Tesla MRI system. Results : Occipital lobes were activated by the 3-D visual stimuli similarly as in the f-MRI with the conventional 2-D visual stimuli. The activated regions by the 3-D visual stimuli were, however, larger than those by the 2-D visual stimuli by $18\%$. Conclusion : Stereoscopic vision is the basis of the three-dimensional human perception. In this paper 3-D visual stimuli were applied using the anaglyph. Functional MRI was performed with 2-D and 3-D visual stimuli at 3.0 Tesla whole body MRI system. The occipital lobes activated by the 3-D visual stimuli appeared larger than those by the 2-D visual stimuli by about $18\%$. This is due to the more complex character of the 3-D human vision compared to 2-D vision. The f-MRI with 3-D visual stimuli may be useful in various fields using 3-D human vision such as virtual reality, 3-D display, and 3-D multimedia contents.

  • PDF

Head Motion Detection and Alarm System during MRI scanning (MRI 영상획득 중의 피험자 움직임 감지 및 알림 시스템)

  • Pae, Chong-Won;Park, Hae-Jeong;Kim, Dae-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Purpose : During brain MRI scanning, subject's head motion can adversely affect MRI images. To minimize MR image distortion by head movement, we developed an optical tracking system to detect the 3-D movement of subjects. Materials and Methods: The system consisted of 2 CCD cameras, two infrared illuminators, reflective sphere-type markers, and frame grabber with desktop PC. Using calibration which is the procedure to calculate intrinsic/extrinsic parameters of each camera and triangulation, the system was desiged to detect 3-D coordinates of subject's head movement. We evaluated the accuracy of 3-D position of reflective markers on both test board and the real MRI scans. Results: The stereo system computed the 3-D position of markers accurately for the test board and for the subject with glasses with attached optical reflective marker, required to make regular head motion during MRI scanning. This head motion tracking didn't affect the resulting MR images even in the environment varying magnetic gradient and several RF pulses. Conclusion: This system has an advantage to detect subject's head motion in real-time. Using the developed system, MRI operator is able to determine whether he/she should stop or intervene in MRI acquisition to prevent more image distortions.