• Title/Summary/Keyword: functional flip-flop

Search Result 9, Processing Time 0.021 seconds

Test Point Insertion with Control Point by Greater Use of Existing Functional Flip-Flops

  • Yang, Joon-Sung;Touba, Nur A.
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.942-952
    • /
    • 2014
  • This paper presents a novel test point insertion (TPI) method for a pseudo-random built-in self-test (BIST) to reduce the area overhead. Recently, a new TPI method for BISTs was proposed that tries to use functional flip-flops to drive control test points instead of adding extra dedicated flip-flops for driving control points. The replacement rule used in a previous work has limitations preventing some dedicated flip-flops from being replaced by functional flip-flops. This paper proposes a logic cone analysis-based TPI approach to overcome the limitations. Logic cone analysis is performed to find candidate functional flop-flops for replacing dedicated flip-flops. Experimental results indicate that the proposed method reduces the test point area overhead significantly with minimal loss of testability by replacing the dedicated flip-flops.

New Scan Design for Delay Fault Testing of Sequential Circuits (순차 회로의 지연 고장 검출을 위한 새로운 스캔 설계)

  • 허경회;강용석;강성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1161-1166
    • /
    • 1999
  • Delay testing has become highlighted in the field of digital circuits as the speed and the density of the circuits improve greatly. However, delay faults in sequential circuits cannot be detected easily due to the existence of state registers. To overcome this difficulty a new scan filp-flop is devised which can be used for both stuck-at testing and delay testing. In addition, the new scan flip-flop can be applied to both the existing functional justification method and the newly-developed reverse functional justification method which uses scan flip-flops as storing the second test patterns rather than the first test patterns. Experimental results on ISCAS 89 benchmark circuits show that the number of testable paths can be increased by about 10% on the average.

  • PDF

High-Speed Digital/Analog NDR ICs Based on InP RTD/HBT Technology

  • Kim, Cheol-Ho;Jeong, Yong-Sik;Kim, Tae-Ho;Choi, Sun-Kyu;Yang, Kyoung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.154-161
    • /
    • 2006
  • This paper describes the new types of ngative differential resistance (NDR) IC applications which use a monolithic quantum-effect device technology based on the RTD/HBT heterostructure design. As a digital IC, a low-power/high-speed MOBILE (MOnostable-BIstable transition Logic Element)-based D-flip flop IC operating in a non-return-to-zero (NRZ) mode is proposed and developed. The fabricated NRZ MOBILE D-flip flop shows high speed operation up to 34 Gb/s which is the highest speed to our knowledge as a MOBILE NRZ D-flip flop, implemented by the RTD/HBT technology. As an analog IC, a 14.75 GHz RTD/HBT differential-mode voltage-controlled oscillator (VCO) with extremely low power consumption and good phase noise characteristics is designed and fabricated. The VCO shows the low dc power consumption of 0.62 mW and good F.O.M of -185 dBc/Hz. Moreover, a high-speed CML-type multi-functional logic, which operates different logic function such as inverter, NAND, NOR, AND and OR in a circuit, is proposed and designed. The operation of the proposed CML-type multi-functional logic gate is simulated up to 30 Gb/s. These results indicate the potential of the RTD based ICs for high speed digital/analog applications.

Functional Simulation of Logic Circuits by Prolog (Prolog를 이용한 논리회로의 기능적 시뮬레이션)

  • Kim, J.S.;Cho, S.B.;Park, H.J.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1467-1470
    • /
    • 1987
  • This paper proposes a functional simulation algorithm which decrease the internal memory space and run time in simulation of VLSI. Flip-flop, register, ram, rom, ic and fun are described as functional elements in the simulator. Especially icf is made as new functional element by combining the gate and the functional element, therefore icf is used efficiently in simulation of VLSI. The proposed algorithm is implemented on PC-AT(MS-DOS) in by Prolog-1.

  • PDF

Efficient Path Delay Testing Using Scan Justification

  • Huh, Kyung-Hoi;Kang, Yong-Seok;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.187-194
    • /
    • 2003
  • Delay testing has become an area of focus in the field of digital circuits as the speed and density of circuits have greatly improved. This paper proposes a new scan flip-flop and test algorithm to overcome some of the problems in delay testing. In the proposed test algorithm, the second test pattern is generated by scan justification, and the first test pattern is processed by functional justification. In the conventional functional justification, it is hard to generate the proper second test pattern because it uses a combinational circuit for the pattern. The proposed scan justification has the advantage of easily generating the second test pattern by direct justification from the scan. To implement our scheme, we devised a new scan in which the slave latch is bypassed by an additional latch to allow the slave to hold its state while a new pattern is scanned in. Experimental results on ISCAS'89 benchmark circuits show that the number of testable paths can be increased by about 45 % over the conventional functional justification.

  • PDF

Test pattern Generation for the Functional Test of Logic Networks (논리회로 기능검사를 위한 입력신호 산출)

  • 조연완;홍원모
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 1976
  • In this paper, a method of test pattern generation for the functional failure in both combinational and sequentlal logic networks by using exterded Boole an difference is proposed. The proposed technique provides a systematic approach for the test pattern generation procedure by computing Boolean difference of the Boolean function that represents the Logic network for which the test patterns are to be generated. The computer experimental results show that the proposed method is suitable for both combinational and asynchronous sequential logic networks. Suitable models of clocked flip flops may make it possible for one to extend this method to synchronous sequential logic networks.

  • PDF

An ARM7 Processor Design with Improved Pipeline and Function Blocks (개선된 Pipeline과 기능 블록을 가진 ARM7 Processor 설계)

  • Cho, Hyun-Woo;Huh, Kyung-Chol;Park, Ju-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.433-434
    • /
    • 2008
  • In this paper, we present an improved design of the conventional ARM7 processor. It is based on the flip-flop to improve the pipeline performance of the processor. Also for improving the performance, the optimization of functional blocks and a multiplier is carried out. According to the experimental results, the maximum delay-time of functional blocks and the execution cycle of a multiplier is reduced by 33% and 2 cycles compared with a conventional design, respectively. Therefore, it leads to improve an operation speed about 30%.

  • PDF

On a Design and Implementation Technique of a Universal ATPG for VLSI Circuits (VLSI 회로용 범용 자동 패턴 생성기의 설계 및 구현 기법)

  • Jang, Jong-Gwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.425-432
    • /
    • 1995
  • In this paper we propose a design and implementation technique of a universal automatic test pattern generator(UATPG) which is well suited for VLSI digital circuits. UATPG is designed to extend the capabilities of the existing APTG and to provide a convenient environment to computer-aided design(CAD) users. We employ heuristic techniques in line justification and fault propagation for functional gates during test pattern generation for a target fault. In addition, the flip-flops associated with design for testability (DFT) are exploited for pseudo PIs and pseudo POs to enhance the testabilities of VLSI circuits. As a result, UATPG shows a good enhancement in convenient usage and performance.

  • PDF

High Performance Coprocessor Architecture for Real-Time Dense Disparity Map (실시간 Dense Disparity Map 추출을 위한 고성능 가속기 구조 설계)

  • Kim, Cheong-Ghil;Srini, Vason P.;Kim, Shin-Dug
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.301-308
    • /
    • 2007
  • This paper proposes high performance coprocessor architecture for real time dense disparity computation based on a phase-based binocular stereo matching technique called local weighted phase-correlation(LWPC). The algorithm combines the robustness of wavelet based phase difference methods and the basic control strategy of phase correlation methods, which consists of 4 stages. For parallel and efficient hardware implementation, the proposed architecture employs SIMD(Single Instruction Multiple Data Stream) architecture for each functional stage and all stages work on pipelined mode. Such that the newly devised pipelined linear array processor is optimized for the case of row-column image processing eliminating the need for transposed memory while preserving generality and high throughput. The proposed architecture is implemented with Xilinx HDL tool and the required hardware resources are calculated in terms of look up tables, flip flops, slices, and the amount of memory. The result shows the possibility that the proposed architecture can be integrated into one chip while maintaining the processing speed at video rate.