• Title/Summary/Keyword: functional differential system

Search Result 135, Processing Time 0.022 seconds

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

Differential Diagnosis between Neurogenic and Functional Dysphonia (신경성 발성장애와 기능성 발성장애의 감별 진단)

  • Kim, So Yean;Lee, Sang Hyuk
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Voice disorder is classified into three categories, structural, neurogenic and functional dysphonia. Neurogenic dysphonia refers to a disruption in the nerves controlling the larynx. Common examples of this include complete or partial vocal cord paralysis, spasmodic dysphonia. Also it occurs as part of an underlying neurologic condition such as Parkinson's disease, myasthenia gravis, Lou Gehrig's disease or disorder of the central nervous system that causes involuntary movement of the vocal folds during voice production. Functional dysphonia is a voice disorder in the absence of structual or neurogenic laryngeal characteristics. A near consensus exist that Muscle tension dysphonia (MTD) is functional voice disorder wherein hyperfunctional laryngeal muscle activity whereas Spasmodic dysphonia (SD) is neurogenic, action-induced focal laryngeal dystonia including several subtype. Both Adductor type spasmodic dysphonia (AdSD) and MTD may be associated with excessive supraglottic contraction and compensation, resulting in a strained voice quality with spastic voice breaks. It makes these two disorders extremely difficult to differentiate based on clinical interpretation alone. Because treatment for AdSD and MTD are quite different, correct diagnosis is important. Clinician should be aware of the specific vocal characteristics of each disease to improve therapeutic outcome.

  • PDF

CONTROLLABILITY FOR SEMILINEAR FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.463-475
    • /
    • 2009
  • This paper deals with the regularity properties for a class of semilinear integrodifferential functional differential equations. It is shown the relation between the reachable set of the semilinear system and that of its corresponding linear system. We also show that the Lipschitz continuity and the uniform boundedness of the nonlinear term can be considerably weakened. Finally, a simple example to which our main result can be applied is given.

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Korean Journal of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This paper shows that the solutions to the perturbed functional dierential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$ have uniformly Lipschitz stability and asymptotic property. To sRhow these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and the fundamental matrix of the unperturbed system $y^{\prime}=f(t,y)$.

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.831-844
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Choi, Sang Il;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2017
  • This paper shows that the solutions to the perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties by imposing conditions on the perturbed part ${\int}_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

Optimal Control of Delay-Differential System under Function Target Condition (함수표적 조건하에서의 지연시스템의 최적제어)

  • Byun, Jeung-Nam
    • 전기의세계
    • /
    • v.27 no.2
    • /
    • pp.53-63
    • /
    • 1978
  • The problem of optimally controlling a time-delay control system to a function as the final target is inverstigated. Necessary conditions are presented in the form of Pontryagin's maximum principle, and it is further shown that they are also sufficient for linear systems with a convex cost functional. Several examples are given to illustrate the results.

  • PDF