• Title/Summary/Keyword: function fields

Search Result 1,433, Processing Time 0.03 seconds

Radiative Transfer Schemes for Hydrodynamical Stellar Surfaces

  • Bach, K.;Robinson, F.J.;Kim, Y.C.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.4-25
    • /
    • 2009
  • We have investigated the radiational fields through a hydrodynamical stellar model atmosphere. Stellar convection zone is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Moreover, super-adiabatic layers are the transition region in energy transport from convection to radiation. Therefore, opacities and thermodynamic properties due to interaction of matter and radiational fields vary significantly with depth. In order to describe radiational fields accurately, the Opacity Distribution Function (ODF) and the Accelerated Lambda Iteration (ALI) have been applied to hydrodynamic medium. As the first result of our radiative transfer, we present time-dependant variation of radiational fields and thermodynamic structures. Our non-gray transfer model has been compared with the conventional Eddington Approximation. Detailed information of radiational fields and thermodynamic properties will provide deeper insight of physical processes inside stellar atmospheres.

  • PDF

The Study on Dose Calculations for Blocked Fields (차폐 조사면에서 선량계산에 관한 연구)

  • 정동혁;김진기;오영기;신교철;김기환;김정기;문성록;김정수;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.133-140
    • /
    • 2001
  • The dose calculations for blocked fields were studied. The shielding block correction factors(K$_{b}$) as a function of collimator and blocked field size(r$_{c}$ and r$_{b}$) were measured. A simplified $K_{b}$ as a function of $A_{r}$ (the A/P ratio of r$_{b}$ to r$_{c}$) was determined by measured data and a fitting function for $K_{b}$ was obtained. We found that the corrections of $K_{b}$ for blocked fields in MU(monitor units) calculations need not take into account in common case of $A_{r}$ \ulcorner1 but the errors will be 3.5% in particular case such as $A_{r}$ = 0.5. These results imply that the shielding block correction for blocked fields in clinical dose calculations must be considered.

  • PDF

CYCLOTOMIC UNITS AND DIVISIBILITY OF THE CLASS NUMBER OF FUNCTION FIELDS

  • Ahn, Jae-Hyun;Jung, Hwan-Yup
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.765-773
    • /
    • 2002
  • Let $textsc{k}$$F_{q}$(T) be a rational function field. Let $\ell$ be a prime number with ($\ell$, q-1) = 1. Let K/$textsc{k}$ be an elmentary abelian $\ell$-extension which is contained in some cyclotomic function field. In this paper, we study the $\ell$-divisibility of ideal class number $h_{K}$ of K by using cyclotomic units.s.s.

ON THE GENERALIZED MODIFIED k-BESSEL FUNCTIONS OF THE FIRST KIND

  • Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.909-914
    • /
    • 2017
  • The recent research investigates the generalization of Bessel function in different forms as its usefulness in various fields of applied sciences. In this paper, we introduce a new modified form of k-Bessel functions called the generalized modified k-Bessel functions and established some of its properties.

A comparative study of different radial basis function interpolation algorithms in the reconstruction and path planning of γ radiation fields

  • Yulong Zhang;Jinjia Cao;Biao Zhang;Xiaochang Zheng;Wei Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2806-2820
    • /
    • 2024
  • Accurate reconstruction of radiation field and path planning are very important for the safety of operators in the process of dismantling nuclear facilities. Based on radial basis function (RBF) interpolation algorithm, this paper discussed the application of inverse multiquadric radial basis Function (IMRBF) interpolation method to the reconstruction of gamma radiation field, and proved the feasibility of reconstructing a radiation field with multiple γ sources. The average relative errors of IMRBF interpolation results were 4.28% and 8.76%, respectively, for the experimental scenarios with single and double gamma sources. After comparing the consistency between the simulated scene and the experimental scene, IMRBF method and Cubic Spline method were respectively used to reconstruct the gamma radiation field by Geant4 simulation data. The results showed that the interpolation accuracy of IMRBF method was superior to that of Cubic Spline method. Further, more RBF interpolation algorithms were used to reconstruct the multi-γ source radiation field, and then the Probabilistic Roadmap (PRM) algorithm was used to optimize the human walking path in the radiation field reconstructed by different interpolation methods. The optimal paths in radiation fields generated by multiple interpolation methods were compared. The results herein contribute to a comprehensive understanding of RBF interpolation methods in reconstructing γ radiation fields and their application in optimizing paths in radiation environments. The insights may provide valuable information for decision-making in radiation protection during the decommissioning of nuclear facilities.

Residual fatigue life evaluation method for the cracked components under complex stress fields (복합응력장 하의 균열부재에 대한 잔류피로수명 평가방법)

  • Cho, Chang-Hee;Kim, sang-Tae;Kwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.258-267
    • /
    • 1998
  • This study reviews the influence function method(IFM) for calculating stress intensity factors (SIFs, K) and modifies it to apply for the estimating the residual fatigue life for the cracked components under complex stress fields. An IFM has been developed to analyze SIFs for surface cracks which are subjectedto nonuniformly distributed stresses. Through elastic superposition, the influence function method properly accounts for redistribution of stress as the crack grows through the component. This influence function is unique to the given geometry and independent of the loading. Some examples have been provided to show the effectiveness of the IFM including the distributions of K in a residual stress field. The significant effect of residual stress upon fatigue crack growth in a welded component has been demonstrated with the IFM.

Time-reversal microwave focusing using multistatic data

  • Won-Young Song;Soon-Ik Jeon;Seong-Ho Son;Kwang-Jae Lee
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.333-346
    • /
    • 2024
  • Various techniques for noninvasively focus microwave energy on lesions have been proposed for thermotherapy. To focus the microwave energy on the lesion, a focusing parameter, which is referred to as the magnitude and phase of microwaves radiated from an external array antenna, is very important. Although the finite-difference time-domain (FDTD)-based time-reversal (TR) focusing algorithm is widely used, it has a long processing time if the focusing target position changes or if optimization is needed. We propose a technique to obtain multistatic data (MSD) based on Green's function and use it to derive the focusing parameters. Computer simulations were used to evaluate the electric fields inside the object using the FDTD method and Green's function as well as to compare the focusing parameters using FDTD- and MSD-based TR focusing algorithms. Regardless of the use of Green's function, the processing time of MSD-based TR focusing algorithms reduces to approximately 1/2 or 1/590 compared with the FDTD-based algorithm. In addition, we optimize the focusing parameters to eliminate hotspots, which are unnecessary focusing positions, by adding phase-reversed electric fields and confirm hotspot suppression through simulations.