DOI QR코드

DOI QR Code

AVERAGE OF CLASS NUMBERS OF SOME FAMILY OF ARTIN-SCHREIER EXTENSIONS OF RATIONAL FUNCTION FIELDS

  • Jung, Hwanyup (Department of Mathematics Education Chungbuk National University)
  • Received : 2016.08.09
  • Accepted : 2016.09.01
  • Published : 2016.12.30

Abstract

In this paper we obtain average of class numbers of some family of Artin-Schreier extensions of rational function field ${\mathbb{F}}_q(t)$, where q is a power of 3.

Keywords

References

  1. S. Bae, H. Jung and P-L. Kang, Artin-Schreier extensions of the rational function field, Mathematische Zeitschrift 276 (2014), 613-633. https://doi.org/10.1007/s00209-013-1215-0
  2. Y-M. Chen, Average values of L-functions in characteristic two, J. Number Theory 128 (2008), 2138-2158. https://doi.org/10.1016/j.jnt.2007.12.011
  3. J. Hoffstein and M. Rosen, Average values of L-series in function fields, J. Reine Angew. Math. 426 (1992), 117-150.
  4. S. Hu and Y. Li, The genus fields of Artin-Schreier extensions, Finite Fields Appl. 16 (2010), 255-264. https://doi.org/10.1016/j.ffa.2010.03.004
  5. H. Jung, Note on average of class numbers of cubic function fields, The Korean Journal of Mathematics 22 (2014), 419-427. https://doi.org/10.11568/kjm.2014.22.3.419
  6. H. Jung, Average of L-functions of some family of Artin-Schreier extensions over rational function fields, submitted.
  7. M. Rosen, Average value of class numbers in cyclic extensions of the rational function field, Number Theory.(Halifax, NS, 1994) (1995), 307-323.
  8. C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2) 45 (1944), 667-685. https://doi.org/10.2307/1969296
  9. L. A. Takhtadzhyan and A. I. Vinogradov, Analogues of the Vinogradov-Gauss formula on the critical line, J. Soviet Math. 24 (1984), 183-208. https://doi.org/10.1007/BF01087241