• Title/Summary/Keyword: function differential equation

Search Result 362, Processing Time 0.03 seconds

An Approach to a Formal Linearization toy Time-variant Nonlinear Systems using Polynomial Approximations

  • Komatsu, Kazuo;Takata, Hitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.2-52
    • /
    • 2002
  • In this paper we consider an approach to a formal linearization for time-variant nonlinear systems. A time-variant nonlinear sysetm is assumed to be described by a time-variant nonlinear differential equation. For this system, we introduce a coordinate transformation function which is composed of the Chebyshev polynomials. Using Chebyshev expansion to the state variable and Laguerre expansion to the time variable, the time-variant nonlinear sysetm is transformed into the time-variant linear one with respect to the above transformation function. As an application, we synthesize a time-variant nonlinear observer. Numerical experiments are included to demonstrate the validity of...

  • PDF

A robust generalized predictive controls

  • Kwon, Wook-Hyun;Noh, Seonbong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.203-207
    • /
    • 1992
  • In this paper, a new GPC(Generalized Predictive Control) algorithm which is robust to disturbances isproposed. This controller minimizes the LQ cost function when the disturbance maximizes this cost function. The solution is obtained from the min-max problem which can be solved by differential game theory and has the non-recursive form which does not use the Riccati equation. Its another solution for state space models is investigated.

  • PDF

Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials (수중둔덕의 거동특성 해석을 위한 수학적 모형)

  • Choi, Han-kyu;Lee, Oh-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Stochastic analysis of external and parametric dynamical systems under sub-Gaussian Levy white-noise

  • Di Paola, Mario;Pirrotta, Antonina;Zingales, Massimiliano
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.373-386
    • /
    • 2008
  • In this study stochastic analysis of non-linear dynamical systems under ${\alpha}$-stable, multiplicative white noise has been conducted. The analysis has dealt with a special class of ${\alpha}$-stable stochastic processes namely sub-Gaussian white noises. In this setting the governing equation either of the probability density function or of the characteristic function of the dynamical response may be obtained considering the dynamical system forced by a Gaussian white noise with an uncertain factor with ${\alpha}/2$- stable distribution. This consideration yields the probability density function or the characteristic function of the response by means of a simple integral involving the probability density function of the system under Gaussian white noise and the probability density function of the ${\alpha}/2$-stable random parameter. Some numerical applications have been reported assessing the reliability of the proposed formulation. Moreover a proper way to perform digital simulation of the sub-Gaussian ${\alpha}$-stable random process preventing dynamical systems from numerical overflows has been reported and discussed in detail.

Estimating the Region of Attraction via collocation for autonomous nonlinear systems

  • Rezaiee-Pajand, M.;Moghaddasie, B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.263-284
    • /
    • 2012
  • This paper aims to propose a computational technique for estimating the region of attraction (RoA) for autonomous nonlinear systems. To achieve this, the collocation method is applied to approximate the Lyapunov function by satisfying the modified Zubov's partial differential equation around asymptotically stable equilibrium points. This method is formulated for n-scalar differential equations with two classes of basis functions. In order to show the efficiency of the suggested approach, some numerical examples are solved. Moreover, the estimated regions of attraction are compared with two similar methods. In most cases, the proposed scheme can estimate the region of attraction more efficient than the other techniques.

THE INFINITE GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR COMPLEX DIFFERENTIAL EQUATIONS WITH COMPLETELY REGULAR GROWTH COEFFICIENT

  • Zhang, Guowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.419-431
    • /
    • 2021
  • In this paper we discuss the classical problem of finding conditions on the entire coefficients A(z) and B(z) guaranteeing that all nontrivial solutions of f" + A(z)f' + B(z)f = 0 are of infinite order. We assume A(z) is an entire function of completely regular growth and B(z) satisfies three different conditions, then we obtain three results respectively. The three conditions are (1) B(z) has a dynamical property with a multiply connected Fatou component, (2) B(z) satisfies T(r, B) ~ log M(r, B) outside a set of finite logarithmic measure, (3) B(z) is extremal for Denjoy's conjecture.

Free Vibrations of Tapered Timoshenko Beam by using 4th Order Ordinary Differential Equation (4계 상미분방정식에 의한 변단면 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the rectangular cross section whose depth is constant but breadth is varied with the parabolic function. The fourth order ordinary differential equation with respect the vertical deflection governing free vibrations of such beam is derived based on the Timoshenko beam theory. This governing equation is solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.