References
- L. Ahlfors, Untersuchungen zur Theorie der konformen abbildung und der Theorie der ganzen Funktionen, Acta Soc. Sci. Fenn. 1 (1930), 1-40.
- I. N. Baker, Multiply connected domains of normality in iteration theory, Math. Z. 81 (1963), 206-214. https://doi.org/10.1007/BF01111543
- I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277-283. https://doi.org/10.5186/aasfm.1975.0101
- I. N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 173-176. https://doi.org/10.1017/s1446788700015287
- W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151-188. https://doi.org/10.1090/S0273-0979-1993-00432-4
- W. Bergweiler and I. Chyzhykov, Lebesgue measure of escaping sets of entire functions of completely regular growth, J. Lond. Math. Soc. (2) 94 (2016), no. 2, 639-661. https://doi.org/10.1112/jlms/jdw051
- Z. Chen, The growth of solutions of f'' + e-zf' + Q(z)f = 0 where the order (Q) = 1, Sci. China Ser. A 45 (2002), no. 3, 290-300.
- A. Denjoy, Sur les fonctions enti'eres de genre fini, C. R. Acad. Sci. Paris, 45 (1907), 106-109.
- A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020. https://doi.org/10.5802/aif.1318
- A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, translated from the 1970 Russian original by Mikhail Ostrovskii, Translations of Mathematical Monographs, 236, American Mathematical Society, Providence, RI, 2008.
- G. G. Gundersen, On the question of whether f'' + e-zf' + B(z)f = 0 can admit a solution f ≢ 0 of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17. https://doi.org/10.1017/S0308210500014451
- G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104. https://doi.org/10.1112/jlms/s2-37.121.88
- G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429. https://doi.org/10.2307/2001061
- J. Heittokangas, I. Laine, K. Tohge, and Z. Wen, Completely regular growth solutions of second order complex linear differential equations, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 985-1003. https://doi.org/10.5186/aasfm.2015.4057
- S. Hellerstein, J. Miles, and J. Rossi, On the growth of solutions of f'' + gf' + hf = 0, Trans. Amer. Math. Soc. 324 (1991), no. 2, 693-706. https://doi.org/10.2307/2001737
- E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley Publ. Co., Reading, MA, 1969.
- A. S. B. Holland, Introduction to the Theory of Entire Functions, Academic Press, New York, 1973.
- K. Ishizaki and K. Tohge, On the complex oscillation of some linear differential equations, J. Math. Anal. Appl. 206 (1997), no. 2, 503-517. https://doi.org/10.1006/jmaa.1997.5247
- I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
- I. Laine and P. Wu, Growth of solutions of second order linear differential equations, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2693-2703. https://doi.org/10.1090/S0002-9939-00-05350-8
- J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439. https://doi.org/10.2996/kmj/1138037272
- B. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, RI, 1964.
- J. R. Long, Growth of solutions of second order complex linear differential equations with entire coefficients, Filomat 32 (2018), no. 1, 275-284. https://doi.org/10.2298/fil1801275l
- J. R. Long and K. E. Qiu, Growth of solutions to a second-order complex linear differential equation, Math. Pract. Theory 45 (2015), no. 2, 243-247.
- J. R. Long, P. C. Wu, and Z. Zhang, On the growth of solutions of second order linear differential equations with extremal coefficients, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 365-372. https://doi.org/10.1007/s10114-012-0648-4
- T. Murai, The deficiency of entire functions with Fejer gaps, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 39-58. https://doi.org/10.5802/aif.930
- E. Schwengeler, Geometrisches uber die Verteilung der Nullstellen spezieller ganzer Funktionen (Exponentialsummen), Dissertation. ETH Zurich, 1925.
- D. J. Sixsmith, Julia and escaping set spiders' webs of positive area, Int. Math. Res. Not. IMRN 2015, no. 19, 9751-9774. https://doi.org/10.1093/imrn/rnu245
- J. Wang and Z. Chen, Limiting directions of Julia sets of entire solutions to complex differential equations, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 1, 97-107. https://doi.org/10.1016/S0252-9602(16)30118-7
- Z.-T. Wen, G. G. Gundersen, and J. Heittokangas, Dual exponential polynomials and linear differential equations, J. Differential Equations 264 (2018), no. 1, 98-114. https://doi.org/10.1016/j.jde.2017.09.003
- X. Wu, J. Long, J. Heittokangas, and K. Qiu, Second-order complex linear differential equations with special functions or extremal functions as coefficients, Electron. J. Differential Equations 2015 (2015), No. 143, 15 pp.
- X. B. Wu and P. C. Wu, Growth of solutions to the equation f'' + Af' + Bf = 0, where A is a solution to a second-order linear differential equation, Acta Math. Sci. Ser. A (Chin. Ed.) 33 (2013), no. 1, 46-52.
- P. Wu and J. Zhu, On the growth of solutions to the complex differential equation f'' + Af' + Bf = 0, Sci. China Math. 54 (2011), no. 5, 939-947. https://doi.org/10.1007/s11425-010-4153-x
- C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-3626-8
- L. Yang and G. H. Zhang, Distribution of Borel directions of entire functions, Acta Math. Sinica 19 (1976), no. 3, 157-168.
- G. H. Zhang, Theory of Entire and Meromorphic Functions-Deficient Values, Asymptotic Values and Singular Directions, Springer-Verlag, Berlin, 1993.
- G. Zhang and J. Wang, The infinite growth of solutions of complex differential equations of which coefficient with dynamical property, Taiwanese J. Math. 18 (2014), no. 4, 1063-1069. https://doi.org/10.11650/tjm.18.2014.3902
- J.-H. Zheng, On multiply-connected Fatou components in iteration of meromorphic functions, J. Math. Anal. Appl. 313 (2006), no. 1, 24-37. https://doi.org/10.1016/j.jmaa.2005.05.038