• Title/Summary/Keyword: full-scale prototype

Search Result 72, Processing Time 0.027 seconds

Development of Crash Cushion by Computer Simulation (컴퓨터 시뮬레이션을 통한 충격흡수시설의 개발)

  • Kim, Dong-Sung;Kim, Kee-Dong;Ko, Man-Gi
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.513-516
    • /
    • 2008
  • The development of crash cushions is finally completed by full-scale vehicle crash tests. Since the current development of crash cushions is achieved by numerous repeated full-scale vehicle crash tests based on empirical and irrational methods, it requires a great amount of costs. In this research, the more rational procedure based on prototype design by static tests and computer simulation is suggested and it can minimize the number of full-scale vehicle crash tests.

  • PDF

Development of a Prototype Control Rod Control System (제어봉 구동장치 제어기기 Prototype 개발)

  • Kim, C.K.;Cheon, J.M.;Kim, S.J.;Lee, J.M.;Ahn, J.B.;Kweon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2182-2184
    • /
    • 2002
  • In this paper we describe a prototype Control Rod Control System(CRCS). The CRCS controls the motion of the full length rod drive mechanisms in response to signals from the Reactor Operator and the Reactor Control System. Each mechanism belongs to either Shutdown Banks or Control Banks. The CRCS also provides information regarding the rod motion, rod position, and the status of the Rod Control System. The prototype CRCS will be used to obtain the requirements for detailed design of a full-scale CRCS.

  • PDF

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun;Ahn, Byeong-Min;Ahn, Cheol-Woo;Choi, Joon-Hwan;Lee, Dae-Han;Lim, Sung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.398-405
    • /
    • 2021
  • To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

Experimental Techniques of Small-Scale Models for Reinforced Concrete Structural Researches (철근콘크리트구조 연구를 위한 소축적 구조모형실험기법)

  • Kim, Woo;Kim, Dae-Joong;Kang, Sung-Hoo
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1991
  • When the behavior of a prototype concrete structure is studied through small-scale model experiments, it is necessary to reproduce all significant physical characteristics on either an one-to-one basis or a specific similitude relationship. Any distortion of similitude must be understood and its effect must be predictable. This paper focuses on improved physical modeling techniques for small-scale reinforced concrete structures. Particular emphasis is placed on the development of a model concrete mix to accurately model the important properties of full-scale prototype concrete. Four types of model reinforcement with different bond characteristics are also studied by testing twenty simple beams. The information obtained will be of immediate use to engineers contemplating small-scale modeling of reinforced concrete structures.

Experimental Study on the Similitude of Small-Scale Models in Cyclic Lateral Behaviors of RC Shear Wall Subassemblages (RC벽식 부분구조의 반복 횡하중 거동에서의 축소모델 상사성 실험연구)

  • Lee, Han-Seon;Cho, Chang-Seok;Lee, Sang-Ho;Oh, Sang-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.805-816
    • /
    • 2010
  • For earthquake simulation test it is essential to make sure the similitude in behaviors between the full scale prototype and the reduced scale model. This paper presents the test results obtained through the cyclic lateral-force test, on two-story RC wall subassemblages. A lower 2-story portion of the prototype structure was selected as subassemblages. The global behavior such as the strength and ductility, and the local behavior such as flexural, shear and uplift deformation were measured. The test results of the 3 : 5 scale specimens representing the prototype were compared with those of 1 : 7 scale models. Two types of subassemblages were used: One with lintel beams and one without lintel beams. The comparison shows that 1 : 7 scale model simulated in general successfully the global and local behaviors of the prototype.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

System-level performance of earthquake-damaged concrete bridges with repaired columns

  • Giacomo Fraioli;Yu Tang;Yang Yang;Lesley H. Sneed
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.361-372
    • /
    • 2024
  • Reinforced concrete (RC) bridge columns are typically designated as the primary source of energy dissipation for a bridge structure during an earthquake. Therefore, seismic repair of RC bridge columns has been studied extensively during the past several decades. On the other hand, few studies have been conducted to evaluate how repaired column members influence the system-level response of an RC bridge structure in subsequent earthquakes. In this study, a numerical model was established to simulate the response of two large-scale RC columns, repaired using different techniques, reported in the literature. The columns were implemented into a prototype bridge model that was subjected to earthquake loading. Incremental dynamic analysis (IDA) and fragility analysis were conducted on numerical bridge models to evaluate the efficacy of the repairs and the post-repair seismic performance of the prototype bridge that included one or more repaired columns in various locations. For the prototype bridge herein modeled, the results showed that a confinement-enhanced oriented repair would not affect the seismic behavior of the prototype bridge. Increasing the strength of the longitudinal reinforcement could effectively reduce the drift of the prototype bridge in subsequent earthquakes. A full repair configuration for the columns was the most effective method for enhancing the seismic performance of the prototype bridge. To obtain a positive effect on seismic performance, a minimum of two repaired columns was required.

Vortex-induced oscillations of bridges: theoretical linkages between sectional model tests and full bridge responses

  • Zhang, Zhitian;Ge, Yaojun;Chen, Zhengqing
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.233-247
    • /
    • 2014
  • Vortex-induced oscillation is a type of aeroelastic phenomenon, to which extended structures such as long-span bridges are most susceptible. The vortex-induced vibration (VIV) behaviors of a concerned bridge were investigated conventionally in virtue of wind tunnel tests on string-mounted sectional models. This necessitates the building of a linkage between the response of the sectional model and that of the prototype structure. Although many released literatures have related to this issue and provided suggestions, there is a lack of consistency among them. In this study, some theoretical models describing the vortex-induced structural motion, including the linear empirical model, the nonlinear empirical model and the modified (or generalized) nonlinear empirical model, are firstly reviewed. Then, the concept of equivalent mass density is introduced based on the principle that an equal input of energy should result in identical structural amplitudes. Based on these, the theoretical linkages between the amplitude of a section model and that corresponding to the prototype bridge are discussed with different analytical models. Theoretical derivation indicates that such connections are dependent mainly on two factors, one is the presupposed shape of deformation, and the other is the theoretical VIV model employed. The theoretical analysis in this study shows that, in comparison to the nonlinear empirical models, the linear one can result in obvious larger estimations of the full bridges' responses, especially in cases of cable-stayed bridges.

Full Scale Load Tests on Reinforced Slope Structure (사면보강구조물에 대한 실물재하시험과 평가)

  • Kwon, Young-Ho;Park, Shin-Young;Lee, Seung-Hyun;Kang, In-Kyu;Ki, Min-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.241-255
    • /
    • 2006
  • Owing to a landslide or embankment damage be caused by a localized torrential downpour and heavy snowfall resulted from recent abnormal climate, a slope stability is very important. This study is investigate a general slope reinforcement method and applicability improvement of soil nailing method utilized prototype loading test for the facing stiffness effect confirmation. A prototype loading test supplements general slope stability study by numerical analysis or laboratory test with a resonable analysis of slope structure.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF