• Title/Summary/Keyword: fuel properties

Search Result 1,503, Processing Time 0.02 seconds

Fundamental Studies on the Manufactruring of prouse Electrode for Plosphoric Acid Fuel Cell. (인산형 연료전지의 다공성전극 제조에 관한 기초적연구)

  • 김영우;박정일;이주성
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 1989
  • A fuel cell which causes electrochemical ratio of conventional with oxygen consists of mainly there parts, such as electrolyte, fuel and oxidant electrode. IN this paper, most efforts were delivered to manufacturing PETE-bonded gas-diffusion electrode, and preparation methods of the porous electrodes has been discussd. A medio temperature, phosphoric acid fuel cell (PAFC) provided with fuel (hydrogen) and oxygen showed oxygen showed excellent performance characteristics with made electrodes. Performance data obtained from hydrgen-oxygen cell were presented to illustrate their properties. It was found that the optimum amounts of platinum in clectrode for hydrgen-oxygen PAFC were about 3mg/cm3 and the PTFE content of gas diffusion layer and catalyst layer were 25% and 15%, respectively.

  • PDF

The Evaluation of 16x16 JDFA Pressure Loss Coefficients Using the Fuel Assembly Compatibility Test System

  • Lim, Hyun-Tae;Jun, Byung-Soon;Kim, Hong-Ju;Jeon, Kyeong-Lak
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.254-259
    • /
    • 1996
  • The hydraulic tests for 16$\times$16 JDFA were performed to obtain the pressure loss coefficients using the FACTS. The pressure loss coefficients are calculated by converting the each properties of experimental values for inlet region, mixing vane grid, outlet region and core region by performing a power fit of the pressure loss coefficient values to the corresponding Reynolds number. The test results are compared with the existing calculated values and evaluated by using the CALOPR code in terms of pressure drop. It is turned out that the differences between the test results and the calculated values are about by 3.8% for the pressure loss coefficients and by 8.5% for the pressure drop.

  • PDF

Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel (바이오디젤-에탄올 혼입연료의 분무 및 연소특성)

  • Eom, Dong-Seop;Choi, Yeon-Soo;Choi, Yong-Seok;Lee, Seang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Spectroscopic Properties of Gamma-ray Detector to Measure the Burnup of Spent Nuclear Fuel (사용후핵연료 연소도 측정을 위한 감마선 검출기의 분광특성 연구)

  • Hey Min Park;Tae Young Kim;Yang Soo Song;Un Jang Lee;Cheol Min Ham
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2023
  • Burnup of spent nuclear fuel should be determined accurately for the safety storage of spent nuclear fuel. In this study, a gamma detection system was developed as a part of basic research to measure the burnup of spent nuclear fuel, and its performance was evaluated using a calibration source. The prototype of the gamma detection system was based on a semiconductor sensor using a CZT (Cadmium Zinc Telluride). For quantitative evaluation, tests were conducted using 137Cs, 134Cs and 252Cf calibration source. In the performance evaluation, Its field applicability was verified by assessing the energy resolution, the detection linearity and the shielding attenuation according to the nuclide.

Biodiesel: Oil-crops and Biotechnology (바이오디젤 원료 작물 품종 개량과 생명공학기술 응용)

  • Roh, Kyung-Hee;Park, Jong-Sug
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.137-146
    • /
    • 2007
  • The substitution of fossil fuels with biofuels has been proposed by the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support the development of rural communities. Vegetable oils and their derivatives (especially methyl esters), commonly referred to as 'biodiesel', are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to the initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. However, several problems remain including economics, combustions, some emissions, lube oil contamination, and low-temperature properties. Therefore, quality control of fuel-related properties of biodiesel is needed to obtain consistent engine performance by fuel users. The quality of the fuel is affected by the oil composition. Rapeseed oil has been targeted for fuel use because it produces an oil with a close-to-optimum set of fuel characteristics. In this paper we have reviewed past and current efforts, both by traditional seed-breeding methods and by genetic engineering, to modify rapeseed oil quality and yield.

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

Synthesis and Ion Conducting Properties of Anion Exchange Membranes Based on PBI Copolymers for Alkaline Fuel Cells (PBI 공중합체를 이용한 알카라인 연료전지용 음이온교환막의 합성과 이온전도특성)

  • Lee, Dong-Hoon;Kim, Se-Jong;Nam, Sang-Yong;Kim, Hyonng-Juhn
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.217-221
    • /
    • 2010
  • In order to overcome the drawback of proton exchange membrane fuel cells (PEMFCs), solid alkalime membrane fuel cells (SAMFCs) have been studied. In this report, we synthesized new sulfonated polybenzimidazole derivatives for SAMFCs. The polyimidazole derivatives were doped by KOH, and base-doped polybenzimidazoles showed high hydroxy ion conductivity and excellent mechanical properties. Especially, sPBI-co-PBI (75 : 25 for molar ratio of sulfonated and non-sulfonated moiety) showed good possibility for the anion exchange membrane. It has $2.98{\times}10^{-2}\;S/cm$ at $90^{\circ}C$ under 100% relative humidity.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

  • Meyer, M.K.;Gan, J.;Jue, J.F.;Keiser, D.D.;Perez, E.;Robinson, A.;Wachs, D.M.;Woolstenhulme, N.;Hofman, G.L.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.169-182
    • /
    • 2014
  • High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

Evaluation of the Tensile Properties of Fuel Cladding at High Temperatures Using a Ring Specimen (링 시험편을 이용한 피복관의 고온 인장특성 평가)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.600-605
    • /
    • 2005
  • In this study, the ring tensile test at high temperature was suggested to evaluate the hoop tensile properties of small tube such as the cladding in the nuclear reactor Using the Arsene's ring model, the ring tensile test was performed and the test data were calibrated. From the result of the ring test with strain gauge and the numerical analysis with 1/8 model, LCRR(load-displacement conversion relationship of ring specimen) was determined. We could obtain the hoop tensile properties by means of applying the LCRR to the calibrated data of the ring tensile test. A few difference was observed in view of the shape of fractured surface and the fracture mechanism between at the high temperature and at the room temperature.