• Title/Summary/Keyword: fuel contamination

Search Result 130, Processing Time 0.021 seconds

Membrane Characteristics for Removing Particulates in PFC Wastes (PFC제염폐액 내의 미립자 제거를 위한 여과막의 특성 연구)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • PFC(Perfluorocarbon) decontamination process is one of best methods to remove hot particulate adhered at inside surface of hot cell and surface of equipment in hot cell. It was necessary to develop a particulate filtration equipment to reuse PFC solution used on PFC decontamination due to its high cost and to minimize the volume of second wastewater. Contamination characteristics of hot particulate were investigated and then a filtration process was presented to remove hot particulate in PFC solution generated through PFC decontamination process. The removal efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic(Al$_{2}$O$_{3}$ filter showed more than 95$\%$. The removal efficiency of PVDF filter was a little lower than those of other kiters at same pressure(3psi). A ceramic filter showed a higher removal efficiency with other filters, while a little lower flux rate than other filters. Due to inorganic composition, a ceramic filter was highly stable against radio nuclides in comparison with PVDF and PP membrane, which generate H$_{2}$ gas in e-radioactivity atmosphere. Therefore, the adoption of ceramic filter is estimated to be suitable for the real nitration process.

  • PDF

Soil Applications of Slaked Lime and Organic Fertilizer for Reducing 99Tc Transfer from Soil to Rice Seeds (99Tc의 토양-쌀알 전이 감소를 위한 소석회와 유기질 비료의 토양첨가)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Kim, Byung-Ho;Keum, Dong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • To see if slaked lime and organic fertilizer applications to soil are useful as countermeasures for reducing $^{99}Tc$ concentrations in rice seeds after $^{99}Tc$ contamination of paddy fields, pot experiments were performed for two different paddy soils in a greenhouse. The upper soils for a depth of about 20 cm were treated with the agricultural materials and $^{99}Tc$ 15 d before transplanting. The effects were compared using the transfer factor (TF) defined as the ratio of the plant concentration to the soil concentration. In the case of control plants, TF values for brown rice in the two soils were $4.1{\times}10^{-4}$ and $4.3{\times}10^{-4}$. Of various types of the application, only the application of slaked lime at a lower dose (about 0.6 kg $m^{-2}$), which led to a 60% reduction in the TF value for one soil, seemed to be worth using as a countermeasure. Little effect of the same application was found in the other soil so it is important to determine the effect averaged for a number of soils. Organic fertilizer applications at both of two different doses increased the TF value. It is considered necessary to perform experiments for slake lime applications at doses lower than the above.

The Development and Performance Evaluation of a Cyclone to Remove Hot Particulate from a Contaminated Hot Cell (Hot Cell 내에 오염된 고방사능분진 제거를 위한 사이클론 개발 및 성능평가)

  • Kim Gye-Nam;Won Hui-Jun;Choi Wang-Kyu;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.217-226
    • /
    • 2006
  • The structural and contamination characteristics of hot cells at KAERI were investigated. The SEM results showed that the size of the hot particulate on the inner surface of the hot cell ranged from 0.2 to $10{\mu}m$. It was found that an inlet flow rate of 15 m/sec was suitable for this developed cyclone with a 49 mm optimum vortex finder length. The results showed that the collection efficiency was about 85% for $3{\mu}m$ particles. The collection efficiency didn't show a sharp increase when the inlet flow rate was faster than 15m/sec. When the temperature of the inlet flow gas was increased, the collection efficiency of the cyclone was slightly decreased. The larger the vortex finder length was, the higher the pressure drop in the cyclone was. The cut size diameter decreased with an increment of the Reynolds number. It was established that the flow in the cyclone was a turbulent flow on the basis of the Reynolds number and this turbulent flow caused a pressure drop in the cyclone. $Stk^{1/2}_{50}$ decreased with increasing values of the Reynolds number and it gradually approached a constant value at a higher value of the Reynolds number Namely, $Stk^{1/2}_{50}$ approached approximately 0.045 between 6000 and 8000 of the Reynolds number.

  • PDF

Evaluation of Groundwater Quality in Crystalline Bedrock Site for Disposal of Radioactive Waste (방사성폐기물 처분을 위한 결정질 기반암의 지하수 수질 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Cheong, Jae-Yeol;Park, Joo-Wan;Yun, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.275-286
    • /
    • 2014
  • This study evaluated the evolution stage and origin of chemical components of 12 boreholes at crystalline bedrock using multivariate statistical and groundwater quality analyses. Groundwater types are mostly belonged to Na(Ca)-$HCO_3$ and Ca-$HCO_3$ types, indicating that directly reaction of cation exchange ($Ca^{2+}{\rightarrow}Na^+$) prevailed. The degree of groundwater evolution is included the range from low to intermediate stage based on field and laboratory analytical conditions. As a result of multivariate statistical analysis, a typical indicator of groundwater contamination, $NO_3$-, has the positive correlation with $Na^+$ and $Cl^-$. The origin of sea spary ($Cl^-$) has the positive correlation with $Na^+$, $SO{_4}^{2-}$, $Mg^{2+}$, and $K^+$, while not correlation with $Ca^{2+}$, $Fe^{2+}$, $HCO_3{^-}$, $F^-$, and $SiO_2$. The concentration of $Cl^-$ and $NO_3{^-}$ belongs to general quality of groundwater and not exceeds over the Korean standard for drinking water. And the negative values of saturation index of minerals are calculated with chemical components in groundwater. Therefore, most of chemical components of groundwater in the study area are originated from natural process between rock and groundwater, whereas some of components are derived from sea spary and anthropogenic sources related to agricultural activities.

Enhanced Migration of Gasohol Fuels in Clay Soils and Sediments (Gasoline-ethanol(Gasohol)혼합액의 점토층 내 이동에 대한 연구)

  • Hee-Chul Choi;W.M. Stallard;Kwang-Soo Kim;In-Soo Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.67-79
    • /
    • 1996
  • Clay soils typically have low hydraulic conductivities in the presence of high polarity pore fluid, such as water. Low polarity fluids, such as hydrocarbon fuels and halogenated organic solvents, typically cannot migrate into clay pores because they cannot displace the pore water. Oxygenated additives in gasoline, such as alcohols and methyl-tert-butyl ether, are increasingly used to control air pollution emissions. These relatively polar and highly water-soluble compounds may facilitate displacement of pore water and enhance migration of fuels and solvents through clay-rich soil strata. In the reported research, the migration of gasoline-alcohol fuel mixtures (gasohol) through consolidated clay was examined. Prepared kaolinite clay samples were consolidated from slurry, and various combinations of gasoline, alcohol, and water were applied to the clays under 152 Pa gauge pressure. Movement of the fluids into the clay samples was monitored by measur ing displaced pore fluid and by magnetic resonance imaging of the samples. The structures of selected samples were examined using environmental scanning electron microscopy. Results of the research suggest that alcohol added to hydrocarbon fuels can enhance migration through some clays significantly. Gasoline did not migrate appreciably into water saturated clay, even after 14 days under pressure. The gasohol mixture migrated readily into the clay in only 20 minutes. Increased hydraulic conductivity of the clay in the presence of gasohol is hypothesized to be due to the collapse of the clays pore structure when ethanol is present, creating larger pores. Increasing pore diameter decreases the capillary pressure needed for the gasohol to replace water and allows gasohol to migrate through the clay.

  • PDF

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil

  • Nur Shahidah Abdul Rashid;Wooyong Um ;Ibrahim Ijang ;Kok Siong Khoo ;Bhupendra Kumar Singh;Nurul Syiffa Mahzan ;Syazwani Mohd Fadzil ;Nur Syamimi Diyana Rodzi ;Aina Shafinas Mohamad Nasir
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1460-1467
    • /
    • 2023
  • A robust approach was conducted to determining the absolute oral bioavailable (fab) fractions of 238U and 232Th in rats exposed to contaminated soil along with their hematotoxicity and nephrotoxicity. The soil sample is the International Atomic Energy Agency-312 (IAEA-312) certified reference material, whereas blood, bones, and kidneys of in vivo female Sprague-Dawley (SD) rats estimate 238U- and 232Th-fab fractions post-exposure. We predict the bioavailable concentration (Cab) and fab values of 238U and 232Th after acute soil ingestion. The blood 238U (0.750%) and 232Th (0.028%) reach their maximum fab values after 48 h. The 238U (fab: 0.169-0.652%) accumulates mostly in the kidney, whereas the 232Th (fab: 0.004-0.021%) accumulates primarily in the bone. Additionally, 238U is more bioavailable than 232Th. Post 48 h acute ingestion demonstrates noticeable histopathological and hematological alterations, implying that intake of 238U in co-contaminated soil can lead to erythrocytes and proximal tubules damage, whereas, 232Th intake can harm erythrocytes. Our study provides new directions for future research into the health implications of acute oral exposures to 238U and 232Th in co-contaminated soils. The findings offer significant insight into the utilization of in vivo SD rat testing to estimate 238U and 232Th bioavailability and toxicity in exposure assessment.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds (우라늄화합물로 오염된 금속폐기물의 전해제염)

  • 양영미;최왕규;오원진;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2003
  • A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2s04 electrolyte, a NaNO$_3$ neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in a Na$_2$SO$_4$ solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO$_3$ on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO$_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO$_3$ solution with the current density or In mA/$\textrm{cm}^2$. it was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO$_3$ neutral salt electrolyte by reducing $\alpha$ and $\beta$ radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF

Study on the Combination of In-situ Chemical Oxidation Method by using Hydrogen Peroxide with the Air-sparging Method for Diesel Contaminated Soil and Groundwater (과산화수소를 이용한 현장원위치 화학적 산화법과 공기분사법(Air-sparging)을 연계한 디젤 오염 토양/지하수 동시 정화 실내 실험 연구)

  • Kim, Nam-Ho;Kim, In-Su;Choi, Ae-Jung;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.8-17
    • /
    • 2006
  • Laboratory scale experiments were performed to investigate the removal efficiency of the in-situ chemical oxidation method and the air-sparging method for diesel contaminated soil and groundwater. Two kinds of diesel contaminated soils (TPH concentration : 2,401 mg/kg and 9,551 mg/kg) and groundwater sampled at Busan railroad station were used for the experiments. For batch experiments of chemical oxidation by using 50% hydrogen peroxide solution, TPH concentration of soil decreased to 18% and 15% of initial TPH concentration. For continuous column experiments, more than 70% of initial TPH in soil was removed by using soil flushing with 20% hydrogen peroxide solution, suggesting that most of diesel in soil reacted with hydrogen peroxide and degraded into $CO_2$ or $H_2O$ gases. Batch experiment for the air-sparging method with artificially contaminated groundwater (TPH concentration : 810 mg/L) was performed to evaluate the removal efficiency of the air-sparging method and TPH concentration of groundwater decreased to lower than 5 mg/L (waste water discharge tolerance limit) within 72 hours of air-sparging. For box experiment with diesel contaminated real soil and groundwater, the removal efficiency of air-sparging was very low because of the residual diesel phase existed in soil medium, suggesting that the air-sparging method should be applied to remediate groundwater after the free phase of diesel in soil medium was removed. For the last time, the in-situ box experiment for a unit process mixed the chemical oxidation process with the air-sparging process was performed to remove diesel from soil and groundwater at a time. Soil flushing with 20% hydrogen peroxide solution was applied to diesel contaminated soils in box, and subsequently contaminated groundwater was purified by the air-sparging method. With 23 L of 20% hydrogen peroxide solution and 2,160 L of air-sparging, TPH concentration of soil decreased from 9,551 mg/kg to 390 mg/kg and TPH concentration of groundwater reduced to lower than 5 mg/L. Results suggested that the combination process of the in-situ hydrogen peroxide flushing and the air-sparging has a great possibility to simultaneously remediate fuel contaminated soil and groundwater.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.