DOI QR코드

DOI QR Code

Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil

  • Nur Shahidah Abdul Rashid (Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH)) ;
  • Wooyong Um (Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH)) ;
  • Ibrahim Ijang (Malaysian Nuclear Agency (MNA)) ;
  • Kok Siong Khoo (Department of Applied Physics, Faculty of Science and Technology, The National University of Malaysia (UKM)) ;
  • Bhupendra Kumar Singh (Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH)) ;
  • Nurul Syiffa Mahzan (Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH)) ;
  • Syazwani Mohd Fadzil (Department of Applied Physics, Faculty of Science and Technology, The National University of Malaysia (UKM)) ;
  • Nur Syamimi Diyana Rodzi (Department of Applied Physics, Faculty of Science and Technology, The National University of Malaysia (UKM)) ;
  • Aina Shafinas Mohamad Nasir (Fuel Cell Institute, The National University of Malaysia (UKM))
  • Received : 2022.09.02
  • Accepted : 2022.12.09
  • Published : 2023.04.25

Abstract

A robust approach was conducted to determining the absolute oral bioavailable (fab) fractions of 238U and 232Th in rats exposed to contaminated soil along with their hematotoxicity and nephrotoxicity. The soil sample is the International Atomic Energy Agency-312 (IAEA-312) certified reference material, whereas blood, bones, and kidneys of in vivo female Sprague-Dawley (SD) rats estimate 238U- and 232Th-fab fractions post-exposure. We predict the bioavailable concentration (Cab) and fab values of 238U and 232Th after acute soil ingestion. The blood 238U (0.750%) and 232Th (0.028%) reach their maximum fab values after 48 h. The 238U (fab: 0.169-0.652%) accumulates mostly in the kidney, whereas the 232Th (fab: 0.004-0.021%) accumulates primarily in the bone. Additionally, 238U is more bioavailable than 232Th. Post 48 h acute ingestion demonstrates noticeable histopathological and hematological alterations, implying that intake of 238U in co-contaminated soil can lead to erythrocytes and proximal tubules damage, whereas, 232Th intake can harm erythrocytes. Our study provides new directions for future research into the health implications of acute oral exposures to 238U and 232Th in co-contaminated soils. The findings offer significant insight into the utilization of in vivo SD rat testing to estimate 238U and 232Th bioavailability and toxicity in exposure assessment.

Keywords

Acknowledgement

This work was supported by the Korea Hydro & Nuclear Power Co., Ltd. (KHNP) Research Fund Haeorum Alliance Nuclear Innovation Center.

References

  1. International Atomic Energy Agency, Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation, Technical Report Series No. 419, International Atomic Energy Agency, Vienna, 2003. https://www-pub.iaea.org/MTCD/publications/PDF/TRS419_web.pdf. 
  2. International Atomic Energy Agency, Case Study on Assessment of Radiological Environmental Impact from Potential Exposure, International Atomic Energy Agency, Vienna, 2020. IAEA-TECDOC-1914, https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1914_web.pdf. 
  3. International Atomic Energy Agency, Implementation and Effectiveness of Actions Taken at Nuclear Power Plants Following the Fukushima Daiichi Accident, International Atomic Energy Agency, Vienna, 2020. IAEA-TECDOC-1930, https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1930web.pdf. 
  4. P.G. Martin, M. Louvel, S. Cipiccia, C.P. Jones, D.J. Batey, K.R. Hallam, I.A. Yang, Y. Satou, C. Rau, J.F.W. Mosselmans, D.A. Richards, Provenance of uranium particulate contained within Fukushima Daiichi nuclear power plant unit 1 ejecta material, Nat. Commun. 10 (1) (2019) 1-7.  https://doi.org/10.1038/s41467-018-07882-8
  5. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risks of Ionizing Radiation. Volume II. Scientific Annex B: Effects of Radiation Exposure of Children, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, 2013. https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2013_Report_Vol.II.pdf. 
  6. M. Ma, R. Wang, L. Xu, M. Xu, S. Liu, Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades, Environ. Int. 145 (2020), 106107, https://doi.org/10.1016/j.envint.2020.106107. 
  7. E.J. Calabrese, E. Stanek, R.C. James, S.M. Roberts, Soil ingestion: a concern for acute toxicity in children, Environ. Health Perspect. 105 (12) (1997) 1354-1358.  https://doi.org/10.1289/ehp.971051354
  8. S.C. Traber, V. Hollriegl, W.B. Li, U. Czeslik, W. Ruhm, U. Oeh, B. Michalke, Estimating the absorption of soil-derived uranium in humans, Environ. Sci. Technol. 48 (24) (2014) 14721-14727.  https://doi.org/10.1021/es504171r
  9. A.L. Juhasz, J. Weber, E. Smith, Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils, J. Hazard Mater. 186 (2-3) (2011) 1870-1879, https://doi.org/10.1016/j.jhazmat.2010.12.095. 
  10. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Uranium, Public Health Service, Atlanta, GA, 2013. https://www.atsdr.cdc.gov/toxprofiles/tp150.pdf. 
  11. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Thorium, Public Health Service, Atlanta, GA, 2019. https://www.atsdr.cdc.gov/ToxProfiles/tp147.pdf. 
  12. S. Takahara, M. Ikegami, M. Yoneda, H. Kondo, A. Ishizaki, M. Iijima, Y. Shimada, Y. Matsui, Bioaccessibility of fukushima-accident-derived Cs in soils and the contribution of soil ingestion to radiation doses in children, Risk Anal. 37 (7) (2017) 1256-1267.  https://doi.org/10.1111/risa.12694
  13. M. Takagi, A. Tanaka, S.F. Nakayama, Estimation of the radiation dose via indoor dust in the ibaraki and chiba prefectures, 150-200 km south from the Fukushima Daiichi nuclear power plant, Chemosphere 236 (2019), 124778, https://doi.org/10.1016/j.chemosphere.2019.124778. 
  14. V. Strachnov, V. Valkovic, R. Zeisler, R. Dekner, Report on the Intercomparison Run IAEA-312 Ra-226, International Atomic Energy Agency, Vienna, 1991. Th and U in soil, IAEA-AL-036. 
  15. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 1912. https://doi/epdf/10.2105/SMWW.2882.082. 
  16. American Society for Testing and Materials, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, American Society for Testing and Materials, West Conshohocken, PA, 2019. ASTM D2216-19, https://www.astm.org/Standards/D2216. 
  17. International Organization for Standardization, Fertilizers and Soil Conditioners-Mineral Soil Amendments-Determination of Total Calcium and Magnesium Content, 2021. ISO 22145:2021, Geneva, Switzerland. 
  18. International Organization for Standardization, Fertilizers and Soil Conditioners-Determination of Water-Soluble Potassium Content-Potassium Tetraphenylborate Gravimetric Method, ISO 17319, Geneva, Switzerland, 2015. 
  19. International Organization for Standardization, Soil Quality-Determination of Total Nitrogen-Modified Kjeldahl Method, 1995. ISO 11261:1995, Geneva, Switzerland. 
  20. J.L. Schroder, N.T. Basta, J. Si, S.W. Casteel, T. Evans, M. Payton, In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil, Environ. Sci. Technol. 37 (7) (2003) 1365-1370.  https://doi.org/10.1021/es026105e
  21. B.H. Almhanawi, B. Khalid, T.A. Ibrahim, E.R.M. Tohit, A transmission electron microscopy study of anticoagulant-induced platelet vesiculation, Porto Biomed. J. 2 (1) (2017) 23-27, https://doi.org/10.1016/j.pbj.2016.11.002. 
  22. H.S. Rahman, A. Rasedee, H.H. Othman, M.S. Chartrand, F. Namvar, S.K. Yeap, N. Abdul Samad, R.J. Andas, N. Muhammad Nadzri, T. Anasamy, K.B. Ng, Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model, BioMed Res. Int. 2014 (2014), 563930. 
  23. J. Chen, D. Lariviere, R. Timmins, K. Verdecchia, Estimation of uranium GI absorption fractions for children and adults, Radiat. Protect. Dosim. 144 (1-4) (2011) 379-383.  https://doi.org/10.1093/rpd/ncq436
  24. V. Hollriegl, W.B. Li, K. Leopold, U. Gerstmann, U. Oeh, Solubility of uranium and thorium from a healing earth in synthetic gut fluids: a case study for use in dose assessments, Sci. Total Environ. 408 (23) (2010) 5794-5800, https://doi.org/10.1016/j.scitotenv.2010.08.020. 
  25. S.C. Traber, W.B. Li, V. Hollriegl, K. Nebelung, B. Michalke, W. Ruhm, U. Oeh, Calculation of internal dose from ingested soil-derived uranium in humans: application of a new method, Radiat, Environ. Biophys. 54 (3) (2015) 265-272.  https://doi.org/10.1007/s00411-015-0602-9
  26. G. Rodrigues, J.D.D.T. Arruda-Neto, R.M.R. Pereira, S.R. Kleeb, L.P. Geraldo, M.C. Primi, L. Takayama, T.E. Rodrigues, G.T. Cavalcante, G.C. Genofre, R. Semmler, Uranium deposition in bones of Wistar rats associated with skeleton development, Appl. Radiat. 82 (2013) 105-110, https://doi.org/10.1016/j.apradiso.2013.07.033. 
  27. G. Creff, S. Safi, J. Roques, H. Michel, A. Jeanson, P.L. Solari, C. Basset, E. Simoni, C. Vidaud, C. Den Auwer, Actinide(IV) deposits on bone: potential role of the osteopontin-thorium complex, Inorg. Chem. 55 (1) (2016) 29-36.  https://doi.org/10.1021/acs.inorgchem.5b02349
  28. S.V. Jovanovic, P. Pan, L. Wong, Bioaccessibility of uranium in soil samples from port hope, ontario, Canada, Environ. Sci. Technol. 46 (16) (2012) 9012-9018.  https://doi.org/10.1021/es3021217
  29. E. Ansoborlo, O. Prat, P. Moisy, C. Den Auwer, P. Guilbaud, M. Carriere, B. Gouget, J. Duffield, D. Doizi, T. Vercouter, C. Moulin, Actinide speciation in relation to biological processes, Biochimie 88 (11) (2006) 1605-1618, https://doi.org/10.1016/j.biochi.2006.06.011. 
  30. M. Foulkes, G. Millward, S. Henderson, W. Blake, Bioaccessibility of U, Th and Pb in solid wastes and soils from an abandoned uranium mine, J. Environ. Radioact. 173 (2017) 85-96, https://doi.org/10.1016/j.jenvrad.2016.11.030.