• Title/Summary/Keyword: front-end

Search Result 1,022, Processing Time 0.025 seconds

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.

Spectrum Sensing System Design Using RF Front-End Processing (RF단 프로세싱에 의한 스펙트럼 센싱 시스템 설계)

  • Hong, Jun Gi;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.305-310
    • /
    • 2015
  • In this paper, a wireless spectrum sensing receiver system is proposed. While a conventional Cognitive Radio(CR) system utilizes frequency down-conversion and demodulation to recognize wireless spectral signal, the proposed one is able to recover and sense valid signal at an RF front-end. It has been designed with a super-regeneration type circuit with a channel selectivity and variability for FDM applications with which a conventional single-channel super-regeneration circuit could not provide. From experimental evaluation, the implemented system has been optimized for channel allocation with quenching signal, and verified for 5 MHz-channel spacing.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Semiconductor Characteristics and Design Methodology in Digital Front-End Design (Digital Front-End Design에서의 반도체 특성 연구 및 방법론의 고찰)

  • Jeong, Taik-Kyeong;Lee, Jang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1804-1809
    • /
    • 2006
  • The aim of this Paper is to describe the implementation of a low-power digital front-End Design (FED) that will act as the core of a stand-alone Power dissipation methodology. The design of digital integrated circuits is a large and diverse area, and we have chosen to focus on low power FED. Designs are made from synthesized logic, and we need to consider the low power digital FED including input clock, buffer, latches, voltage regulator, and capacitance-to-voltage counter which have been integrated onto hish bandwidth communication chips and system. These single- chip micro instruments, implemented in a 0.12um CMOS technology operate with a single 0.9V supply voltage, and can be used to monitor dynamic and static power dissipation, Vesture, acceleration junction temperature (Tj), etc.

An Experimental Study on the Axial Impact Collapse Characteristics of Spot Welded Section Members

  • Cha, Cheon-Seok;Beak, Kyung-yun;Kim, Young-Nam;Park, Tae-Woung;Yang, In-Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.23-29
    • /
    • 2003
  • The spot welded sections of automobiles (hat and double hat shaped sections) absorb most of the energy in a front-end collision. The target of this paper is to analyze the energy absorbing capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changed the spot welded pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads at various impact velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. Hat shaped section members were tested at the impact collapse velocities of 4.72m/sec, 6.54m/sec and 7.1m/sec and double hat shaped section members were tested at the impact collapse velocities of 6.54m/sec, 7.1 m/sec and 7.27m/sec.

Design of A 3V CMOS Programmable Gain Amplifier for the Information Signal Processing System (정보처리 시스템용 3V CMOS 프로그래머블 이득 증폭기 설계)

  • 송제호;김환용
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.753-758
    • /
    • 2002
  • In this paper, low voltage 3V CMOS programmable gain amplifier(PGA) for using in the transmitter and receiver of ADSL analog front-end is designed. The designed receive PGA is connected with 1.1MHz continuous lowpass fillet and controls the gain from 0dB to 30dB. And also the transmitter PGA is connected with 138KHz lowpass filter and controls the gain from -15dB to 0dB. The gain of All PGAs can be programmed by digital logic circuits and main controller. The designed PGAs are verified using HSPICE simulation with $0.35\mu{m}$ CMOS parameter.

  • PDF

A Wrist Watch-type Cardiovascular Monitoring System using Concurrent ECG and APW Measurement

  • Lee, Kwonjoon;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.702-712
    • /
    • 2016
  • A wrist watch type wearable cardiovascular monitoring device is proposed for continuous and convenient monitoring of the patient's cardiovascular system. For comprehensive monitoring of the patient's cardiovascular system, the concurrent electrocardiogram (ECG) and arterial pulse wave (APW) sensor front-end are fabricated in $0.18{\mu}m$ CMOS technology. The ECG sensor frontend achieves 84.6-dB CMRR and $2.3-{\mu}Vrms$-input referred noise with $30-{\mu}W$ power consumption. The APW sensor front-end achieves $3.2-V/{\Omega}$ sensitivity with accurate bio-impedance measurement lesser than 1% error, consuming only $984-{\mu}W$. The ECG and APW sensor front-end is combined with power management unit, micro controller unit (MCU), display and Bluetooth transceiver so that concurrently measured ECG and APW can be transmitted into smartphone, showing patient's cardiovascular state in real time. In order to verify operation of the cardiovascular monitoring system, cardiovascular indicator is extracted from the healthy volunteer. As a result, 5.74 m/second-pulse wave velocity (PWV), 79.1 beats/minute-heart rate (HR) and positive slope of b-d peak-accelerated arterial pulse wave (AAPW) are achieved, showing the volunteer's healthy cardiovascular state.

Joint Scheme of IQ Imbalance Compensation and AGC for Optimal DFE in M-WiMAX Mobile Modem (M-WiMAX 시스템의 DFE 최적화를 위한 IQ 불균형 보상과 AGC 결합 기법)

  • Kim, Jong-Hun;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.341-346
    • /
    • 2009
  • M-WiMAX (Mobile-Worldwide Interoperability for Microwave Access) system, which uses OFDM (Orthogonal Frequency Division Multiplexing) technique, is known to be proper for mobile high-speed data transmission system. Nevertheless, M-WiMAX is seriously sensitive to IQ imbalance caused by the LO (Local Oscillator) at the receiver. In this paper, we analyze the effect of IQ imbalance on the system, and then propose a joint optimization scheme that can optimize DFE (Digital Front-end) of mobile modem by combining operation duplicated between AGC (Automatic Gain Control) and the estimation and compensation of IQ imbalance. Simulation results show that the proposed scheme achieves the same performance of the conventional scheme while reducing the complexity of the H/W implementation.

A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes (차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구)

  • 이길성;백경윤;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF