• Title/Summary/Keyword: friction.

Search Result 8,306, Processing Time 0.032 seconds

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

A Study on the Development of Cu Free Friction Material of Composite Brake to Response Eco-friendly Regulation (친환경 법규 대응을 위한 복합재 브레이크의 Cu Free 마찰재 개발에 관한 연구)

  • Shim, J.H.;Lee, J.H.;Shin, U.H.;Lim, D.W.;Hyun, E.J.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 2022
  • Composite material is widely used in the automotive industries because it has excellent mechanical properties and is possible to reduce weight due to the low density. However, there is a new obstacle to meet environment regulation like Cu less or Cu free regulation for the friction material. Although it is strongly demanded, there are few research results about that unfortunately. Unless this problem is not solved properly, it is impossible to apply composite brake system to vehicle. In this paper, a new eco-friendly friction material for composite brake system is represented to respond these regulations. To do this, friction characteristics between existing low steel friction material and new eco-friendly friction material are verified to secure performances for brake system such as effect characteristic, fade characteristic and wear characteristic. And composite brake gets the equivalent or better performance compared to a low steel friction material. Finally, this result contributes to the study of major principles for the development of eco-friendly friction material in the future.

A Study on Mechanical Properties and Friction Weldability of SKH51 and SM45C (SKH51/SM45C의 마찰용접특성에 관한 연구)

  • Lee, Se-Gyoung;Min, Byung-Hoon;Choi, Su-Hyun;Shim, Do-Ki;Min, Taeg-Ki
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.53-58
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding of shaft made of SKH51 and SM45C, of which the diameter is 12mm. Friction welding was done at welding conditions of 2,000rpm, friction pressure of 104MPa, upset pressure of 134MPa, friction time of 0.5sec to 2.5sec by increasing 0.5sec, upset time of 2 seconds. Under these conditions, a tensile test, a bending test, a shear test, a hardness test and a microstructure of weld interface were studied. When the friction time was 1.0 second under the conditions, the maximum tensile strength of the friction weld observed to be 963MPa, which is 89% the tensile strength of SKH51 base metal and 101% of the tensile strength of SM45C base metal. When the friction time was 1.0 seconds under the conditions, the maximum bending strength of the friction weld happened to be 1,647MPa, which is 78% the bending strength of SKH51 base metal(2,113MPa) and 87% of the bending strength of SM45C base metal(1,889MPa). When the friction time was 1.0 seconds under conditions, the maximum shear strength of the friction weld was observed to be 755MPa, which is 92% the shear strength of SKH51 base metal and 122% of the shear strength of SM45C base metal. According to the hardness test, the hardness distribution of the weld interface varied from Hv282 to Hv327. HAZ was formed from the weld interface to 1.2mm of SKH51 and 1.6mm of SM45C. Upon examination it was found that the microstructure became finer along with increase of friction revolution radius.

An Improved Friction Model and Its Implications for the Slip, the Frictional Energy, and the Cornering Force and Moment of Tires

  • Park, K.S.;Oh, C.W.;Kim, T.W.;Jeong, Hyun-Yong;Kim, Y.H.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1399-1409
    • /
    • 2006
  • An improved friction model was proposed with consideration of the effect of the sliding speed, the contact pressure and the temperature, and it was implemented into a user subroutine of a commercial FEM code, ABAQUS/Explicit. Then, a smooth tire was simulated for free rolling, driving, braking and cornering situations using the improved friction model and the Coulomb friction model, and the effect of the friction models on the slip, the frictional energy distribution and the cornering force and moment was analyzed. For the free rolling, the driving and the braking situations, the improved friction model and the Coulomb friction model resulted in similar profiles of the slip and the frictional energy distributions although the magnitudes were different. The slips obtained from the simulations were in a good correlation with experimental data. For the cornering situation, the Coulomb friction model with the coefficient of friction of 1 or 2 resulted in lower or higher cornering forces and moments than experimental data. In addition, in contrast to experimental data it did not result in a maximum cornering force and a decrease of the cornering moment for the increase of the speed. However, the improved friction model resulted in similar cornering forces and moments to experimental data, and it resulted in a maximum cornering force and a decrease of the cornering moment for the increase of the speed, showing a good correlation with experimental data.

AN EXPERIMENTAL STUDY ON FRICTIONAL FORCES OF VARIOUS ORTHODONTIC WIRES UNDER ARTIFICIAL SALIVA (인공타액하에서 수종 교정선의 마찰력에 관한 실험적 연구)

  • Hwang, Hyeon-Shik;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.245-256
    • /
    • 1989
  • Translational movement along an arch wire requires sufficient force to overcome frictional forces between bracket and arch wire. The orthodontist must appreciate the importance of friction in this process, and study out the influencing factors on the level of friction. The purpose of this study was to evaluate the effect of artificial saliva on frictional resistances generated between the bracket and arch wire. Independent variables of this study were arch wire material, angulation and environment. Static frictional forces of cobalt-chromium, heat-treated cobalt-chromium, beta-titanium, stainless steel wires were measured under non-angulated dry, angulated dry, non-angulated saliva, angulated saliva conditions. The results were as follows: 1. Stainless steel wires showed lower friction values in non-angulated dry condition, and heat-treated cobalt-chromium wires showed higher friction values in angulated dry condition. Higher friction values were showed in order of cobalt-chromium. stainless steel, heat-treated cobalt-chromium and beta-titanium wires in non-angulated saliva condition. and were showed in order of stainless steel, cobalt-chromium, heat-treated cobalt-chromium, beta-titanium wires in angulated saliva condition. 2. Angulation increased friction for stainless steel wires under dry condition. 3. Artificial saliva decreased friction for cobalt-chromium wires and increased friction for stainless steel wires under non-angulated condition. 4. Artificial saliva decreased friction for all wires except beta-titanium wires under angulated condition. 5. Regardless of angulation or environment. heat-treated cobalt-chromium and beta-titanium wires showed higher friction values, and stainless steel wires showed lower friction values.

  • PDF

Nano/Micro-friction properties or Chemical Vapor Deposited (CVD) Self-assembled monolayers on Si-wafer

  • Yoon Eui-Sung;Singh R.Arvind;Han Hung-Gu;Kong Hosung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.90-98
    • /
    • 2004
  • Nano/micro-scale studies on friction properties were conducted on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature $(24{\pm}1^{\circ}C)$ and humidity $(45{\pm}5\%)$. Nano-friction was evaluated using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Si-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples was also evaluated at the micro-scale using a micro-tribotester. It was observed that SAMs had superior frictional property due to their low interfacial energies. In order to study of the effect of contact area on friction coefficient at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientific Corporation) of different radii 0.25 mm, 0.5 mm and 1 mm at different applied normal loads $(1500,\;3000\;and\;4800{\mu}N)$. Results showed that Si-wafer had higher friction coefficient than DPDM. Furthermore, unlike that in the case of DPDM, friction was severely influenced by wear in the case of Si-wafer. SEM evidences showed that solid-solid adhesion to be the wear mechanism in Si-wafer.

  • PDF

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • Yoon, Eui-Sung;R.Arvind Singh;Oh, Hyun-Jin;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF

A Study on the Friction Welding for Light Piston-Rod(SM45C/SM45C-Pipe) (경량 피스톤 로드를 위한 마찰용접 적용연구(SM45C/SM45C-Pipe 사용))

  • Min, Byung-Hoon;Lim, Hyung-Taek;Min, Taeg-Ki
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • Various research to reduce weight of a car is achieving. This research is tendencious to manufacture solid piston rod of shock absorber as hollow piston rod using friction welding. This study deals with the friction welding of SM45C to SM45C-Pipe that is used in car shock absorber, The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. 1. In tensile strength, the hole processing is better than non-hole processing. 2. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 869MPa, which is 103% of SM45C's tensile strength and 91% of SM45C's Pipe. 3. When the friction time was 2.0seconds under the conditions, the maximum bending strength of the friction weld happened to be 1599MPa, which is 80% of SM45C's bending strength and 118% of SM45C's Pipe.

A Study on the Mechanical Properties as a Result of Friction Welding With SKH55 and SM45C (고속도강(SKH55)과 기계구조용 탄소강(SM45C)의 마찰용접특성에 관한 연구)

  • Choi, Su-Hyun;Min, Byung-Hoon;Kim, Noh-Kyung;Lim, Hyung-Taek;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • This study deals with the friction welding of SKH55 and SM45C; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 190MPa, upset pressure of 270MPa and upset time of 2.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 1.0 seconds, the tensile strength of friction welds was 926MPa, which is around as much as 84% of the tensile strength of base metal(SKH55), the bending strength of friction welds was 1,542MPa, which is around as much as 80% of the bending strength of base metal(SKH55), the shear strength of friction welds was 519MPa, which is around as much as 70% of the shear strength of base metal(SKH55). 2 According to the hardness test, the hardness distribution of the weld interface was formed from 964Hv to 254Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 1.5mm of SKH55 and 2mm of SM45C.