• Title/Summary/Keyword: friction noise

Search Result 414, Processing Time 0.029 seconds

The Bearing Capacity Comparison of Drilled Shaft by the Static Load Test and the Suggested Bearing Capacity Formulas (현장타설말뚝의 정재하시험에 의한 지지력과 이론식에 의한 지지력과의 비교)

  • 천병식;김원철;최용규;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2003
  • The driven pile has environmental problems such as vibration and noise. Especially, if the site consists of gravel, cobble and weather rock, the driven pile can not be applied. Therefore, the application of the drilled shafts is increasing in Korea. However, the bearing capacity values by the suggested theoretical formulas are generally considered too conservative. In this paper, static load tests for the rock socketed drilled shaft at Gwangandaero and Suyeong3hogyo are performed and in order to estimate the side friction of the shaft, strain gauges are applied. The bearing capacities from the field test data and the bearing capacity values by the theoretical formula are compared. Even the static load tests didn't reach to the ultimate bearing capacity condition, and all the measured bearing capacity values were higher than those by the theoretical formulas. The field data also showed that the major bearing capacities were not due to end bearings but side friction resistances. Based on the above results, several suggestions are proposed for the drilled shaft design.

Reliability Improvement of the Electronic Security Fence Using Friction Electricity Sensor by Analyzing Frequency Characteristic of Environmental Noise Signal (환경잡음신호의 주파수특성 분석에 의한 전자보안펜스의 신뢰성 향상)

  • Yun, Seok Jin;Won, Seo Yeon;Kim, Hie Sik;Lee, Young Chul;Jang, Woo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • A passive type of fence security system was developed, which was based on electric charge detection technique. The implemented fence security system was installed at outskirts of greenhouse laboratory in the University of Seoul. The purpose of this research is to minimize false alarms by analyzing environmental noise. The existing system determines the intrusion alarm by analyzing the power of amplified signal, but the alarm was seriously affected by natural strong wind and heavy rainfall. The SAU(Signal Analysis Unit) sends input signals to remote server which displays intrusion alarm and stores all the information in database. The environmental noise such as temperature, humidity and wind speed was separately gathered to analyze a correlation with input signal. The input signal was analyzed for frequency characteristic using FFT(Fast Fourier Transform) and the algorithm that differentiate between intrusion alarm and environmental noise signal is improved. The proposed algorithm is applied for the site for one month as the same as the existing algorithm and the false alarm data was gathered and analyzed. The false alarm number was decreased by 98% after new algorithm was applied to the fence. The proposed algorithm improved the reliability at the field regarding environmental noise signal.

Laboratory and Field Performance Evaluation of Acryl Resin Based Solar Radiation Reflective Pavement (아크릴 수지를 이용한 차열성 포장의 실내 및 현장 공용성 평가)

  • So, Kyung-Rock;Lee, Hyun-Jong;Baek, Jong-Eun;Lee, Sang-Yum
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This study developed a solar radiation reflection pavement, so called a cool pavement, to lessen the urban heat island effect by coating a pavement surface with acrylic resins mixed with light-colored pigments. From a laboratory test, simulating solar heating process in pavements, the cool pavement reduced more than $12^{\circ}C$ of pavement temperature at $60^{\circ}C$ compared to a control porous pavement. With the increase of the mixing ratio of the pigments to acrylic resins, the temperature reduction effect increased, but its workability became worse due to higher viscosity. As a result, an appropriate mixing ratio was determined as 15%. The cool pavement had better durability than the control pavement: One quarter of Catabro loss and twofold dynamic stability. Its adhesion was also higher enough not to be debonded under traffic loading. In-situ noise and friction tests conducted in two field sites showed that the cool pavement reduced its noise level by 3.7dB in average and increased its friction level by 30% compared to the control pavement. The permeability of the cool pavement was little lower than the control pavement, but higher enough to satisfy the minimum requirement for porous pavements.

Optimization Design of the Clinch Stud using the Finite Element Analysis and the Taguchi Method (유한요소해석과 다구찌 방법을 이용한 클린치 스터드의 설계 최적화)

  • Byun, Hong-Seok;Kim, Gang-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3135-3141
    • /
    • 2013
  • This study derives the optimal conditions for design parameters of clinch stud with high torque resistance and bonding force by using FE simulation and Taguchi method. Maximum forming load and filled rate of material are considered as objective functions. Height and depth of groove with diameter and depth of lobe are chosen as design parameters. These control factors and the friction considered as noise factor are combined by orthogonal array. Forming load and filled rate are evaluated through the simulation. Simulation results are analyzed by using the ratio of signal to noise through Taguchi method. From these results, their optimal combination conditions are proposed. In the order of the most important parameter which affects filled rate, there are the height of lobe, the height of groove, the radius of lobe and the depth of groove.

Development of Rattle and Squeak Detection Methodology Considering Characteristics of Road Vibration Input (차량 부품의 노면 가진 특성을 고려한 래틀과 스퀵 현상 검출 방법의 개발)

  • Lyu, Su Jung;Jun, In Ki;Choi, Jae Min;Lee, Won Ku;Woo, Jae Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.679-683
    • /
    • 2013
  • BSR noise emerges in a vehicle as a result of road vibrations, engine vibrations, and speaker vibrations. BSR noise occurs with an irregular impact or stick slip friction phenomenon as the influence of the resonance mode when the vibration input load is transferred along poor joint and contacting pairs of the system. A sub-structure method of finite element analysis is required to detect impacts and slip in the full vehicle model. This study presents a method for sub-structure modeling and a rattle and squeak detection methodology that considers the characteristics of road vibration inputs.

The Strength Properties of Permeable Hot Mix Asphalt for Surface Course (배수성 아스팔트 표층용 혼합물의 강도특성)

  • Lee, Kwan-Ho;Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3296-3301
    • /
    • 2011
  • The Porous pavement gains popularity because of several benefits. It is to minimize hydro-planning condition, spraying condition, and splash to increase friction resistance, and decrease noise. Also, other studies showed that it is important to have appropriate porosity to reduce noise and water flush. The purpose of this study is an evaluation on the mechanical properties of asphalt pavements for surface course. In this study the specimen was manufactured using the Gyratory compactor in order to compact the strengthened surface course that involved the two-layer pavement. This study is conducted by using Marshall stability test(KS F 2377), Impact resonance test, Schmidt hammer test(KS F 2730), and the Uniaxial compression test(KS F 2314). Using the Uniaxial compression test and Schmidt hammer test, the values of compressive strength and bearing capacity were measured, and the modulus of elasticity for each specimen was respectively measured using the Uniaxial compression test, Impact Resonance test.

A Study on Analysis of Electrostatics Destruction of Electronic Equipment (전자부품의 정전파괴(ESD) 분석에 관한 연구)

  • Lee, Du-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.235-241
    • /
    • 2010
  • The static electricity generated by friction of two objects is called frictional electricity. The main cause of troubles in electronic components for military and civil use as well as in military radar appliances is found mostly in parts like LSI memories, particularly when they lose information of function momentarily while in operation, which usually leads to a fatal cause of troubles in the equipment. Troubles occur if electric noise is caused by the spark effected from discharge of static electricity from the equipment that is used nearby.

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Experimental identification of nonlinear model parameter by frequency domain method (주파수영역방법에 의한 비선형 모델변수의 실험적 규명)

  • Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.