• Title/Summary/Keyword: friction capacity

Search Result 469, Processing Time 0.026 seconds

An Experimental Study on Pullout Behavior of Shallow Bearing Plate Anchor (얕은 지압형 앵커의 인발거동특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Kim, Hyung-Kong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.5-18
    • /
    • 2014
  • Depending on the underground load support mechanism, anchors are classified as friction anchors, bearing plate anchors and the recently developed combined friction-bearing plate anchors which combine the characteristics of both the friction and bearing plate type anchors. Even though numerous studies have been performed on bearing plate anchors, there were only few studies performed to observe the failure surface of bearing plate anchors. Furthermore most of the soil materials used on these tests were not real sand but carbon rods. In this study, sand was placed in the soil tank and laboratory tests were performed with bearing plate anchors installed with an embedment depth (H/h) ranging from 1~6. The variation in the pullout capacity and the behaviour of soil with the embedment depth (H/h) were observed. Ground deformation analysis program was also used to analyze soil displacement, zero extension direction, maximum shear strain contours. It was determined from the analysis of the results that at ultimate pullout resistance the deformation was 5 mm and the failure surface occurred in a narrower area when compared with results of the previous researches. It was also observed that the width of the fracture surface gradually becomes wider and expands up to the surface as the deformation increases from 10 mm to 15 mm.

Nonlinear Analysis of PSC Girders with External Tendons (외부강선으로 긴장된 PSC 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.303-314
    • /
    • 2010
  • A study for the nonlinear analysis method of prestressed concrete(PSC) girders with external tendons is presented. The PSC girders with external tendons show the complex nonlinear behavior due to the slip of external tendons at deviator and the change of eccentricity between the girders and external tendons. The external tendon between anchorage-deviator or deviator-deviator is modeled as an assemblage of the curved elements. The slip effect of the external tendon at deviator is taken into account using the force equilibrium relationship between the friction force and the driving force at each deviator. The finite element model and analysis method of the external tendon suggested herein are integrated in the nonlinear analysis program of segmentally erected PSC frames developed by the authors. The proposed analysis method is verified through the comparison of the analysis and experimental results obtained from other investigators. From the ultimate analysis results of PSC beams with external tendons having different number of deviators, the yielding and ultimate loads of PSC beams found to be increased as the number of deviators are increased. In addition, the ultimate capacity of the PSC beam increases according to the increase of friction coefficient between deviator and external tendon, whereas found to decease over the certain value of friction due to the effect of the moment transmitted to the member by the friction force exerted from the external tendon.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils (사질토지반의 선단확장형말뚝의 인발거동 특성)

  • Cho, Seok-Ho;Kim, Hak-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3599-3609
    • /
    • 2010
  • Recently, the construction of coastal structures and high-rise structures against the horizontal and uplift forces increases with the developing the coastal developments. Especially the application of belled tension pile as foundation type to effectively resist uplift force is increasing in coastal structures. However, research on pullout resistance of belled tension pile has been limited and not yet been fully performed. Therefore, the pullout load tests of belled tension piles in four overseas sites were performed, then the bearing capacity, characteristics on load-displacement of piles and load distribution considering skin friction were investigated in this paper. In addition, the limit pullout bearing capacity calculated by the three-dimensional finite element analysis and theoretical methods were compared with values of in-situ test.

Behavior of Small-Scale Pile Group Under Vertical Loading (연직하중을 받는 소규모 무리말뚝의 거동)

  • 이영남;이승현;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • Pile load tests were carried out to investigate the contribution of the pile cap to the carrying capacity of a pile group and load transfer characteristics of piles in the group. A group of 24 piles$(4 \times6 array)$ of 92.5mm diameter steel pipe were installed to the depth of 3m fron the ground surface, the top of weathered rock. A maximum load of 320ton was applied to the pile cap, $1.5\times2.3m$, in contact with the ground surface. At the maximum load of 320ton, the pile cap has carried 22% of the total load. Average ultimate capacity of pile in the pile group was estimated to be 16.4ton, substantially higher than that of single pile, installed at the corner and tested before pile cap construction. For the same magnitude of settlement, the pile in the center carried less load than the pile at the perimeter due to strain superposition effect. Piles in the group showed almost constant contribution(approx. 60%) of side friction to the total capacity for all of the loading stages, while that of single pile decreased from 82% to 65%.

  • PDF

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF

A Study on the skin friction characteristics of SIP and the estimation of the nonlinear numerical modelling equation (SIP말뚝의 주면마찰특성 및 비선형 수치모델식 산정에 관한 연구)

  • 천병식;임해식;김도형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.153-160
    • /
    • 2003
  • While the interests on the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP(Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model with SM, SC soil were suggested.

  • PDF

Study on the Characteristic Performance of Porous metal bearing by Various Porosity (다공율변화에 의한 Porous metal bearing의 성능 특성에 대한 연구)

  • Chung, Sun Mo
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.88-101
    • /
    • 1985
  • There is a certain relation between the performance characteristics of the porous metal bearing and the porosity. Since the relation is not explicit, author tried to investigate it by numerical analysis and experiment. The analysis and experiment show that the load carrying capacity decreases as porosity increases while attitude angle and friction parameter increase as porosity increases.

Study for the Vertical Vibratioin Control Method of Railway Structure (철도구조물의 연직진동 제어기법에 관한 연구)

  • Choi, Eun-Soo;Lee, Joo-Tak;Yu, Seong-Mun;Lee, You-In
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1242-1247
    • /
    • 2011
  • This study investigates vertical vibration control method for railway structure by using vertical vibration control device. The device consists of high stiffness polyurethane spring and friction damper recognized by National Center for Earthquake Engineering Research of USA for durability. To confirm the capacity of vertical vibration control, at first, behavior equation is established by considering correlation among the components. Then, hysteresis curve is drawed from behavior equation. By considering both dynamic behaviors and material nonlinearities, more reasonable behavior of the device can be simulated. After that, the Validity of the vibration control trend is proved by FEM(Finite Element Method).

  • PDF

An Analysis of Dynamic Characteristics for Running Safety Improvement of the Rubber Tired AGT Localization Bogie (고무차륜 경량전철 국산화 대차의 주행안전성 향상을 위한 동특성 해석)

  • Eom, Beom-Gyu;Han, Byeong-Yeon;An, Cheon-Heon;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1894-1904
    • /
    • 2011
  • The Light Rail Transit (LRT) System which has medium transport capacity between subway and bus(5,000-25,000 persons per hour) is the most advanced transportation system. It has many benefits, cheap construction, operational costs through driverless and flexible route planning. Also, the rubber tired AGT (K-AGT) of various LRT has a rubber wheels and side guide. The side guide type has an many advantages. but occur a vibration and friction noise through contact between guide rail and wheel. Most of point that decreased comport is vibration thorough the guide contact. In this paper, It is purpose to improve the maximum running speed of rubber tired AGT localization bogie which is currently developed from 70km/h to 80km/h. To satisfy comport index of railway vehicle that is required in performance test. we examined coefficient of bogie suspension which is designed.

  • PDF