• Title/Summary/Keyword: friction capacity

Search Result 469, Processing Time 0.021 seconds

The effect of Foam Volume Ratio on the Shear Friction Behavior of Bottom Ash Based Lightweight Aggregate Concrete (바텀애시 골재 기반 경량 콘크리트의 전단마찰거동에 대한 기포 혼입률의 영향)

  • Kim, Jong-Won;Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.183-184
    • /
    • 2020
  • This study evaluated the effect of foam volume ratio on shear friction behavior of bottom ash based lightweight aggregate concrete (LWA_BA). The LWA_BA with different foam volume ratio ranged between 8 and 25 MPa for compressive strength(fck), 17.3~62.5 kN for shear capacity at first shear crack(Vcr), 31.1~73.8 kN for shear friction capacity(Vn), and 0.01~0.03 mm for slip at maximum peak load(S0). fck decreased with increase in the foam volume ratio, showing that this trend was also observed in Vcr, Vn, and S0.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing (줄기초 지지력 상계해를 활용한 천부 암반의 등가마찰각과 등가점착력 산정)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.284-292
    • /
    • 2015
  • The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI, $m_i$ and D on the equivalent friction angle and cohesion are investigated.

Effect of N Value and Pile Length Ratio on Bearing Capacity Distribution of Cohesionless Soil (사질토 지반에서 N값과 말뚝의 길이비가 지지력 분담 특성에 미치는 영향)

  • Lee, Kwang-Wu;You, Seung-Kyong;Han, Jung-Geun;Park, Jeong-Jun;Kim, Ki-Sung;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This study describes the evaluation results of pile length ratio and N value on the bearing capacity of drilled shafts in cohesionless soil. The bearing capacity ratio in Meyerhof's formula is affected only by the length ratio, and it is equally evaluated a sharing ratio of the end bearing capacity and the skin friction. NAVFAC's formula shows that the pile length influences both end bearing capacity and the skin friction, but pile length is also found to be a more influence factor on the end bearing capacity. Especially, it was found that the effect of pile length factor was larger than the effect of N value and pile diameter. FHWA's formula was evaluated to reflect the influence factor by skin friction more positively than other formulas at calculation the bearing capacity. It was also confirmed that the influence of the skin friction is larger when the ultimate bearing capacity is evaluated.

Carrying Capacity Behavior of Instrumented PC Piles (시험 콘크리트 말뚝의 지지력 거동)

  • 이영남;이종섭
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.163-172
    • /
    • 1998
  • To study the carrying capacity behavior of pile, dynamic pile testis and static load tests were carried out on two instrumented piles during and some time after pile driving. Cone Penetration Test( CPT) and Standard Penetration Test(SPT) were also performed at the test site before pile tests to investigate the relationship between unit skin friction of piles and cone tip resistance values and SPT N values. Total static capacity of pile reached the ultimate stage at the pile head settlement of about 0.055D (D : Pile diameter), at which skin friction of Pile already Passed the maximum value, but the end bearing was still increasing with the pile head settlement. The carrying capacity of pile increased in the form of natural logarithmic function with the time after pile driving. The increase in skin friction with time was very substantial the increase in skin friction 40 days after pile driving was 4.6 times of that determined during pile driving. The contribution of skin friction to the total capacity twas insignificant in the beginning, but became substantial 40 days after pile driving. This implies that the tested pile initially responded as an end bearing pile and later behaved as a friction pile. It was also noted that unit skin friction of pile might be ielated to cone tip resistance values(q.) and SPT N values, though the coefficient of this relationship might differ from one soil group to another and was somewhat greater than the value used in the design practice of Korea.

  • PDF

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

Study(II) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Improvement Measures of Current Design Method by Analyzing Current Design Data for Prebored PHC Piles - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(II) - 설계 사례 분석을 통한 매입 PHC말뚝의 설계 개선 방향 -)

  • Yea, Geu Guwen;Yun, Dae Hee;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.31-42
    • /
    • 2019
  • A total of 73 pile design data for prebored PHC piles was analyzed to study the current design method. Based on the design data, a ratio of skin friction to total capacity from the pile design data was about 20~53%. Such low ratio of skin friction to total capacity tends to underestimate skin friction. Considering this tendency, the current design method should be improved. Also, an average design efficiency of PHC pile capacity was 70% and an average design efficiency for bearing capacity of soil or weathered rock was 80%, which shows slightly higher value than the former. This is probably due to the fact that the allowable bearing capacity is estimated to be equal to or slightly higher than the design load. Hence, the allowable bearing capacity should be estimated to be higher than the long-term allowable compressive force of the PHC pile. In the current design method, skin friction is calculated to be about 2.2 times lower than end bearing. The current design method for prebored PHC piles applied foreign design methods without any verification of applicability to the domestic soil or rock condition. Therefore, the current design method for prebored PHC piles should be improved.

Performance Evaluation of Nano-Lubricants at Refrigeration Oil (나노입자를 적용한 냉장고 압축기용 오일의 윤활특성 평가)

  • Lee, Kwang-Ho;Hwang, Yu-Jin;Kwon, Lae-Un;Lee, Jae-Keun;Kim, Seok-Ro;Kim, Sun-Wook
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.184-188
    • /
    • 2008
  • It has been recognized that friction coefficient decreased with decreasing viscosity of oil in lubrication. In general, the more viscosity decreases, the more wear rate increases due to decrease load carrying capacity. It has been proposed that nano particles in oil decrease friction coefficient and wear rate. The purpose of this study is to apply oil of lower viscosity that mix with nano particles at the compressor used in a refrigerator to decrease friction coefficient keeping Load carrying capacity. Mineral oil of 8 cSt were used and mixed with nano particle. Friction coefficient was evaluated by a disk-on-disk tester. As a result, friction coefficient of nano oil decreased by 90% in comparison with raw oil. These results lead us to the conclusion that nano oil is new plan to raise efficiency of the compressor.

  • PDF