DOI QR코드

DOI QR Code

Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing

줄기초 지지력 상계해를 활용한 천부 암반의 등가마찰각과 등가점착력 산정

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 이연규 (군산대학교 해양과학대학 해양건설공학과)
  • Received : 2015.06.01
  • Accepted : 2015.06.17
  • Published : 2015.06.30

Abstract

The generalized Hoek-Brown failure criterion, the strength parameters of which are determined by using the GSI index, is an empirical nonlinear failure criterion of rock mass and has been widely employed in various rock engineering practices. Many rock engineering practitioners, however, are still familiar with the description of the strength of rock mass in terms of friction angle and cohesion. In addition, almost all rock mechanics softwares incorporate the simple linear Mohr-Coulomb function. Therefore, it is necessary to provide a tool to implement the Hoek-Brown function in the framework of the Mohr-Coulomb criterion. In this study, the use of upper-bound solution of limit analysis for bearing capacity of a strip footing resting on the ground surface is proposed for the estimation of the equivalent friction angle and cohesion of rock mass incorporating the generalized Hoek-Brown failure criterion. The upper-bound bearing capacity is expressed in terms of friction angle by use of the relationship between tangential friction angle and tangential cohesion implied in the generalized Hoek-Brown function. The friction angle minimizing the upper-bound bearing capacity is taken as the equivalent friction angle. Through the illustrative implementations of the proposed method, the influences of GSI, $m_i$ and D on the equivalent friction angle and cohesion are investigated.

일반화된 Hoek-Brown 파괴함수는 GSI 지수를 이용하여 현장 암반의 강도정수를 결정하는 경험적 비선형 파괴조건식으로서 오늘날 다양한 암반공학적 설계에 널리 활용되고 있다. 그러나 여전히 많은 암반공학 전문가들이 암반의 강도를 마찰각과 점착력으로 표현하는 것에 익숙하다. 또한 거의 대부분의 암반안정성해석 수치해석 프로그램이 간편한 선형 Mohr-Coulomb 파괴조건식을 채택하고 있다. 이에 따라 Hoek-Brown 파괴함수를 Mohr-Coulomb 파괴함수 틀에서 이해하는 방법의 제시가 필요하다. 이 연구에서는 한계해석 상계정리를 적용하여 유도된 줄기초의 지지력 공식을 활용하여 Hoek-Brown 파괴조건을 따르는 천부 암반의 등가마찰각과 등가점착력을 계산하는 방법을 제안하였다. 일반화된 Hoek-Brown 파괴함수가 내포하는 접선점착력-접선마찰각 관계식을 이용하여 지지력 상계해를 마찰각의 함수로 표현한 후 최소 지지력 조건의 마찰각을 탐색하여 이를 등가마찰각으로 간주하였다. 제안된 방법을 활용하여 GSI, $m_i$, 교란계수 D가 등가마찰각과 등가점착력에 미치는 영향을 분석하였다.

Keywords

References

  1. Barton, N., Lien, R. and Lunde, J., 1974, Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, 6.4, 189-236. https://doi.org/10.1007/BF01239496
  2. Bieniawski, Z.T., 1989, Engineering rock mass classification, John Wiley & Sons, New York, 251p.
  3. Chen, W.-F. and Liu, X.L., 1990, Limit analysis in soil mechanics, Elsevier, New York, 477p.
  4. Chen, W.-F., 2008, Limit analysis and soil plasticity, J.Ross Publishing Inc., 638p.
  5. Hoek, E. and Brown, E.T., 1980, Empirical strength criterion for rock masses, J. Geotech. Eng. Div., ASCE, 106(GT9), 1013-1035.
  6. Hoek, E., 1983, Strength of jointed rock masses, 23rd Rankine Lecture, Geotechnique, 33.3, 187-223.
  7. Hoek, E. and Brown, E.T., 1988, The Hoek-Brown failure criterion - a 1988 update, Proc. 15th Canadian Rock Mech. Symp., Toronto, J.H. Curran Ed., pp.31-38.
  8. Hoek, E., 1990, Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27.3, 227-229. https://doi.org/10.1016/0148-9062(90)94333-O
  9. Hoek, E. and Brown, E.T., 1997, Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34.8, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  10. Hoek, E., Carranza-Torres, C., and Corkum, B., 2002, Hoek-Brown criterion - 2002 edition, Proc. NARMS-TAC Conf., Toronto, 267-273.
  11. Hoek, E., Kaiser, P.K., and Bawden, W.F., 1995, Support of underground excavations in hard rock, A.A. Balkema, Rotterdam, 215p.
  12. Hoek, E. and Marinos, P., 2000, Predicting tunnel squeezing problems in weak heterogeneous rock masses, Tunnels and Tunnelling International Part 1 - November 2000, Part 2 - December 2000.
  13. Lee, Y.K., 2014a, Derivation of Mohr envelope of Hoek- Brown failure criterion using non-dimensional stress transformation, Tunnel & Undeground Space (J. Korean Soc. Rock Mech.), 24.1, 81-88. https://doi.org/10.7474/TUS.2014.24.1.081
  14. Lee, Y.K., 2014b, Relationship between tangential cohesion and friction angle implied in the generalized Hoek-Brown failure criterion, Tunnel & Undeground Space (J. Korean Soc. Rock Mech.), 24.5, 366-372. https://doi.org/10.7474/TUS.2014.24.5.366
  15. Ucar, R., 1986, Determination of shear failure envelope in rock masses, J. Geotech. Eng. Div. ASCE, 112.3, 303-315. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(303)
  16. Yang, X.L., Li, L., and Yin, J.H., 2004, Stability analysis of rock slopes with a modified Hoek-Brown failure criterion, Int. J. Num. Anal. Meth. Geomech., 28, 181-190. https://doi.org/10.1002/nag.330