• Title/Summary/Keyword: freshwater environments

Search Result 129, Processing Time 0.031 seconds

Use of Pyrosequencing for Characterizing Microbial Community at Phylum Level in Yeongsan River Watershed during Early Summer (Pyrosequencing을 이용한 하절기 영산강 유역의 Phylum 계층의 세균 군집 조사)

  • Chung, Jin;Park, Sang Jung;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We have conducted pyrosequencing for freshwater microbial community analyses. Fourteen sites along the Yeongsan river were selected for this study, and samples were collected monthly from May to July, 2012. Total 987,380 reads were obtained from 42 samples and used for taxonomic classification and OTU distribution analysis. Our results showed that high geographical and temporal variation in the phylum level bacterial composition, suggesting that microbial community is a very sensitive parameter affected by the surrounding environments including tributaries and land use nearby. In addition, we conducted an OTU-based Microbial Source Tracking to identify sources of fecal pollution in the same region. From this study Firmicutes was found to be the most influential taxa in this region. Here, we report that the use of pyrosequencing based microbial community analysis may give an additional information on freshwater quality monitoring, in addition to the currently used water quality parameters, such as BOD and pH.

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk;Lee, Byeong-Gweon
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2005
  • Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.

Characterizations of four freshwater amoebae including opportunistic pathogens newly recorded in the Republic of Korea

  • Hyeon Been Lee;Jong Soo Park
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.118-133
    • /
    • 2023
  • Background: Free-living amoebae (FLA) are widely distributed in freshwater, seawater, soil, and extreme environments, and play a critical role as feeders on diverse preys in the ecosystem. Also, some FLA can become opportunistic pathogens in animals including humans. The taxa Amoebozoa and Heterolobosea are important amoeboid groups associated with human pathogens. However, the identification and habitat of amoebae belonging to Amoebozoa and Heterolobosea remain poorly reported in the Republic of Korea. This study highlights the first record for identification and source of four amoebae including putative pathogens in the Republic of Korea. Results: In the present study, four previously reported FLA were isolated from freshwaters in Sangju Gonggeomji Reservoir (strain GO001), one of the largest reservoirs during the Joseon Dynasty period, and along the Nakdong River, the largest river in the Republic of Korea (strains NR5-2, NR12-1, and NR14-1) for the first time. Microscopic observations and 18S rDNA phylogenetic trees revealed the four isolated strains to be Acanthamoeba polyphaga (strains NR5-2 and NR12-1), Tetramitus waccamawensis (strain GO001), and Naegleria australiensis (strain NR14-1). Strains NR5-2 and NR12-1 might be the same species and belonged to the morphological Group 2 and the T4 genotype of Acanthamoeba. Strain GO001 formed a clade with T. waccamawensis in 18S rDNA phylogeny, and showed morphological characteristics similar to previously recorded strains, although the species' flagellate form was not observed. Strain NR14-1 had the typical morphology of Naegleria and formed a strongly supported clade with previously recorded strains of N. australiensis in phylogenetic analysis of 18S rDNA sequences. Conclusions: On the bases of morphological and molecular analyses, four strains of FLA were newly observed and classified in the Republic of Korea. Three strains belonging to the two species (A. polyphaga and N. australiensis) isolated from the Nakdong River have the potential to act as opportunistic pathogens that can cause fatal diseases (i.e. granulomatous amoebic encephalitis, Acanthamoeba Keratitis, and meningoencephalitis) in animals including humans. The Nakdong River in the Republic of Korea may provide a habitat for potentially pathogenic amoebae, but additional research is required to confirm the true pathogenicity of these FLA now known in the Republic of Korea.

Hydrogeochemical Characteristics and Microbial Community Structures of Freshwater in Ulleung Island (울릉도 담수의 수리지화학적 특성 및 미생물 군집 구조)

  • Dong-Hun Kim;Byong Wook Cho;Byeong Dae Lee;Jung-Yun Lee;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.3
    • /
    • pp.1-13
    • /
    • 2024
  • This study investigated the hydrogeochemical and microbiological characteristics of freshwater on Ulleung Island, a volcanic island in the Ulleung Basin on the East Coast of Korea. The shallow groundwater (CSW, NRGW) and the surface water (SISW) samples are classified as Na-HCO3 type, reflecting an alkaline rock type and an oxidizing environment due to the influence of a highly permeable pyroclastic rock layer. In contrast, the deep groundwater sample (DMW) is classified as Ca-HCO3 type, suggesting the influence of deep-sourced carbon dioxide and reducing conditions. Microbial communities in the water samples are generally dominated by Proteobacteria, with the relative abundance of major genera varying depending on water quality and environmental conditions. Network analysis reveals the ecological characteristics of microbial communities adapted to specific environments. The presence of pathogenic genera in the shallow groundwater suggests potential groundwater contamination, necessitating appropriate management to ensure its use as drinking water or domestic water. The findings of this study provide valuable insights into the ecological characteristics of Ulleung Island's groundwater resources and can inform future groundwater management strategies.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems (수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술)

  • Kim, Keonhee;Ryu, Jeha;Hwang, Soon-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.170-189
    • /
    • 2021
  • Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

Molecular Phylogenetic Study of the Barbel Steed (Hemibarbus labeo) in Seomjin River of Korea (한국 섬진강산 누치(Hemibarbus labeo)의 분자 계통유전학적 연구)

  • Park, Kiyun;Lee, Wan-Ok;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.221-230
    • /
    • 2019
  • Barbel steed (Hemibarbus labeo) is a small freshwater fish species as semi-bottom dwellers distributed in eastern Asia. We carried out characterization of the cytochrome c oxidase subunit I (COI) gene from the mitochondrial DNA of H. labeo in the Sumjin River to identify the phylogenetic location of H. labeo in the genus Hemibarbus and Cyprinidae. Multiple alignment of the 577 bp COI sequence revealed high sequence homology (99~100%) between Seomjin River H. labeo. The nucleotide sequence similarity between H. labeo (HD1) and H. mylodon was 88.91% and that of H. longirostis was 88.81% among the three species found in Korea. In addition, the nucleotide sequence similarities of H. maculatus, H. meditus, H. umbrifer and H. barbus showed 98.97%, 97.20%, 96.87% and 98.85%, respectively. Phylogenetic analysis on seven species of the genus Hemibarbus showed that the H. labeo collected in this study formed two clades. One of which consisted of Hadong, Imsil, Kangjin. The other one formed a step with HD2, HD8 and HD9 of Hadong and the H. labeo reported in Busan, Asan and Seoul, Korea. Phylogenetic position of the H. labeo among Cyprinidae showed 0.143 for the evolutionary distance from Zacco platypus and 0.006 for the H. maculatus. In addition, the genetic position of the H. labeo among 28 species of Cyprinidae was found to be located in Group I, including Gobioninae fishes. The results of this study will provide key genetic information for the taxonomic comparison in Cyprinidae and study of model fish for pollution monitoring in freshwater environments.

Variations of Water Environments and Species Compositions of Microalgae during Summer in the Coast of Dokdo, Korea (독도 연안의 하계 수환경과 미세조류의 종조성 변화)

  • Kim, Mi-Kyung;Shin, Jae-Ki
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 2007
  • This study was carried out to investigate the charateristics of environmental factors and the species compositions of phytoplanktons and periphytons in order to analyze the marine ecosystem (DOK1-3) with freshwater (Mul) in the coast of Dokdo. Mean values of conductivity (TSD) (44.3 mS cm–1), total dissolved solids (30.9 mg L–1), salinity (31.8 psu), total suspended solids (39.2 mg L–1), and ash-free dry matter (AFDM) (8.8 mg L–1) were higher in DOK1- 3 than those in Mul (3.2 mS cm–1, 2.3 mg L–1, 1.9 psu, 2.8 mg L–1 and 2.8 mg L–1, espectively), while mean amounts of soluble reactive phosphorus (SRP) (7.5 μg P L–1) and soluble reactive silicon (SRS) (0.1 μg Si L–1) were significantly lower in DOK1-3 than those in Mul (117.3 μg P L–1 and 4,105 μg Si L–1, respectively). The phytoplanktons was a total of 59 species in Dokdo, which were composed of 1 species (1.7%) for Chrysophyceae, 43 species (72.9%) for Bacillariophyceae and 15 species (25.4%) for Dinophyceae. The biomass (Chl-a, phaeopigment and AFDM) of epilithic algae (ELA), epizooic algae (EZA) and epiphytic algae (EPA) were varied with the kinds of substrates (EPA > ELA > EZA) in the whole stations. Water environments was comparatively clean in the coast of Dokdo as comparing with those of the land. However, the monitoring of marine ecosystem in the Dokdo should be continued for species conservation according to the global warming by the climatic change.

Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

  • Armah, Frederick Ato;Gyeabour, Elvis Kyere
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were $4.18{\times}10^{-6}$ and $1.84{\times}10^{-7}$, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.

An Improved Approach to Identify Bacterial Pathogens to Human in Environmental Metagenome

  • Yang, Jihoon;Howe, Adina;Lee, Jaejin;Yoo, Keunje;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1335-1342
    • /
    • 2020
  • The identification of bacterial pathogens to humans is critical for environmental microbial risk assessment. However, current methods for identifying pathogens in environmental samples are limited in their ability to detect highly diverse bacterial communities and accurately differentiate pathogens from commensal bacteria. In the present study, we suggest an improved approach using a combination of identification results obtained from multiple databases, including the multilocus sequence typing (MLST) database, virulence factor database (VFDB), and pathosystems resource integration center (PATRIC) databases to resolve current challenges. By integrating the identification results from multiple databases, potential bacterial pathogens in metagenomes were identified and classified into eight different groups. Based on the distribution of genes in each group, we proposed an equation to calculate the metagenomic pathogen identification index (MPII) of each metagenome based on the weighted abundance of identified sequences in each database. We found that the accuracy of pathogen identification was improved by using combinations of multiple databases compared to that of individual databases. When the approach was applied to environmental metagenomes, metagenomes associated with activated sludge were estimated with higher MPII than other environments (i.e., drinking water, ocean water, ocean sediment, and freshwater sediment). The calculated MPII values were statistically distinguishable among different environments (p < 0.05). These results demonstrate that the suggested approach allows more for more accurate identification of the pathogens associated with metagenomes.