• Title/Summary/Keyword: frequency-phase method

Search Result 1,647, Processing Time 0.036 seconds

A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators (압전구동 능동형 체크밸브를 이용한 고출력 마이크로펌프)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a novel high power micropump using active check valves in place of conventional passive check valves employed at the inlet and outlet ports is presented. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. A prototype micropump having an effective size of $17mm{\times}8mm{\times}11mm$ is fabricated. Frequency-dependent flow rate characteristics, bi-directional flow characteristics and load characteristics are experimentally investigated using a timing control method for valve closing motion. From the obtained experimental results, it is ascertained that optimal values of the phase shift compared to the voltage to drive pump chamber are $15^{\circ}$ for inlet check valve and $195^{\circ}$ for outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with an effective size of $10mm{\times}10mm{\times}10mm$ is fabricated and the basic characteristics are experimentally investigated.

  • PDF

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF

The K-band Oscillator using Split Ring Resonator (Split Ring 공진기를 이용한 K-Band Oscillator)

  • Han-Kee Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 1997
  • In this paper, a 23 GHz push-push oscillator was designed and fabricated for 23 GHz point-to-point communication using split ring resonator. The split ring resonator was equivalent circuit and numerical method of MPIE(Mixed Potential Integral Equation). The analysis of split ring resonator which coupled between microstrip lines was carried out with transmission-mode using this results. The fabricated oscillator showed the output power of 4 dBm, the 1'st harmonic suppression of -20 dBc, the 3rd harmonic suppression of -34 dBc, a SSB phase noise of -109 dBc / Hz at 1MHz offset frequency from the carrier was achieved and 1.4 percents efficiency at 23 GHz. The experimental outputs were in good results with the theoretical and simulated results.

  • PDF

An Orthogonal Phase-Superimposed Peak-to-Average Power Ratio Reduction Technique

  • Han, Tae-Young;Kim, Nam;Choi, Jung-Hun;Lee, Jae-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.169-174
    • /
    • 2007
  • This paper presents a method of superimposing the rotation phases over the pilot and data symbols in order to reduce the peak-to-average power ratio(PAPR) in orthogonal frequency division multiplexing(OFDM). The phases of the rotation vector are added to those of the pilot symbols and those of the data symbols by interlaying them between any two pilot symbols. The receiver restores the data symbols by utilizing the channel estimation of the pilot symbols. Therefore, the bandwidth efficiency is improved by not using the subcarriers that are assigned for the reduction of the PAPR. Also, the enormous increase of the bit error rate which would be caused by incorrectly receiving the side information, i.e. the phases of the rotation vector, is prevented. The simulation results of the bit error rate performance for the BPSK are given using the COST-207 channel model.

Real-Time Harmonic Parameters Analyzer for Evaluating Induction Motor Drive System (유도전동기 구동시스템 평가를 위한 실시간 고조피 파라미터 분석장치)

  • Lim, Young-Cheol;Jung, Young-Gook
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.479-483
    • /
    • 1997
  • In general, motor parameters can be divided into mechanical/electrical parameters and harmonic parameters. Mechanical/electrical parameters identification of motor have been studying systematically for a long time. But, systematical study on harmonic parameters analysis for efficient motor drive system are very poor. The goal of this paper is to propose analyzing method of harmonic parameters for motor drive system with various experimental graphic screens and numerical results and to develope harmonic parameters analyzer. A developed analyzer is made up 586-PC and DSP (digital signal processor) board, motor drive system, power and harmonic parameters analyzing software for windows. Harmonic parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis results are visualized by 3-D current coordinates, and it is compared and evaluated with conventional time/frequency domain. To verify the validity of the proposed system, 1/4HP capacitor run type single phase induction motor and thyristor speed controller is used for analyzing. Harmonic parameters of motor drive system is analyzed and verified, with varying fire angle of thyristor speed controller, and the proposed approach is to confirm validity.

  • PDF

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

Voltage Feedforward Control with Time-Delay Compensation for Grid-Connected Converters

  • Yang, Shude;Tong, Xiangqian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1833-1842
    • /
    • 2016
  • In grid-connected converter control, grid voltage feedforward is usually introduced to suppress the influence of grid voltage distortion on the converter's grid-side AC current. However, owing to the time-delay in control systems, the suppression effect of the grid voltage distortion is seriously affected. In this paper, the positive effects of the grid voltage feedforward control are analyzed in detail, and the time-delay caused by the low-pass filter (LPF) in the voltage filtering circuits and digital control are summarized. In order to reduce the time-delay effect on the performance of the feedforward control, a voltage feedforward control strategy with time-delay compensation is proposed, in which, a leading correction of the feedforward voltage is used. The optimal leading step used in this strategy is derived from analyzing the phase-frequency characteristics of a LPF and the implementation of digital control. By using the optimal leading step, the delay in the feedforward path can be further counteracted so that the performance of the feedforward control in terms of suppressing the influence of grid voltage distortion on the converter output current can be improved. The validity of the proposed method is verified through simulation and experiment results.

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • Park, Hyun-Chul;Lee, Su-Woon;Kim, Yeong-Min;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

The Microwave Dielectric Properties of Low-Temperature Sintered $ZnNb_2O_6$ Ceramics with Addition (첨가물에 따른 저온소결형 $ZnNb_2O_6$ 세라믹스의 마이크로파 유전특성)

  • Kim, Jung-Hun;Kim, Jae-Sik;Kim, Ji-Heon;Lee, Moon-Kee;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • The $ZnNb_2O_6$ ceramics with 3wt% CuO and $B_2O_2$(1,3,5wt%) were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of $1000^{\circ}C\sim1050^{\circ}C$ for 3hr. in air. The structural properties were investigated with sintering temperature by XRD and SEM. Also, the microwave dielectric properties were investigated with sintering temperature. Increasing the sintering temperature, the peak of second phase ($Cu_3Nb_2O_8$) was increased. But no significant difference was observed as sintering temperature. In the $ZnNb_2O_6$ ceramics with 3wt% CuO and 5wt% $B_2O_3$ sintered at $1025^{\circ}C$ for 3hr, the dielectric constant, quality factor, temperature coefficient of the resonant frequency were 22.92, 20,271GHz, -14.27ppm/$^{\circ}C$, respectively.

  • PDF

Microwave-modified sol-gel preparation of La2(MoO4)3:Er3+/Yb3 particles and their upconversion photoluminescence properties

  • Lim, Chang Sung
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.314-320
    • /
    • 2014
  • $La_{2-x}(MoO_4)_3:Er^{3+}/Yb^{3+}$ particles with doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}$=0.05, 0.1, 0.2 and $Yb^{3+}$ = 0.2, 0.45) were successfully prepared by the microwave-modified sol-gel method, and the upconversion photoluminescence properties were investigated. Well-crystallized particles, formed after heat-treatment at $900^{\circ}C$ for 16 h, showed a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, $La_{1.7}(MoO_4)_3:Er_{0.1}Yb_{0.2}$ and $La_{1.5}(MoO_4)_3:Er_{0.05}Yb_{0.45}$ particles exhibited a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicated the presence of strong peaks at higher frequencies of 752, 846, 922, 1358 and $1435cm^{-1}$ and lower frequency of $314cm^{-1}$ induced by the disorder of the $[MoO_4]^{2-}$ groups with the incorporation of the $Er^{3+}$ and $Yb^{3+}$ elements into the crystal lattice or by a new phase formation.