• Title/Summary/Keyword: frequency-locked loop

Search Result 368, Processing Time 0.028 seconds

Phase Locked Loop based Pulse Density Modulation Scheme for the Power Control of Induction Heating Applications

  • Nagarajan, Booma;Sathi, Rama Reddy
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.65-77
    • /
    • 2015
  • Resonant converters are well suited for induction heating (IH) applications due to their advantages such as efficiency and power density. The control systems of these appliances should provide smooth and wide power control with fewer losses. In this paper, a simple phase locked loop (PLL) based variable duty cycle (VDC) pulse density modulation (PDM) power control scheme for use in class-D inverters for IH loads is proposed. This VDC PDM control method provides a wide power control range. This control scheme also achieves stable and efficient Zero-Voltage-Switching (ZVS) operation over a wide load range. Analysis and modeling of an IH load is done to perform a time domain simulation. The design and output power analysis of a class-D inverter are done for both the conventional pulse width modulation (PWM) and the proposed PLL based VDC PDM methods. The control principles of the proposed method are described in detail. The validity of the proposed control scheme is verified through MATLAB simulations. The PLL loop maintains operation closer to the resonant frequency irrespective of variations in the load parameters. The proposed control scheme provides a linear output power variation to simplify the control logic. A prototype of the class-D inverter system is implemented to validate the simulation results.

A Study on the Optimum Design of Charge Pump PLL with Dual Phase Frequency Detectors (두 개의 Frequency Detector를 가지고 있는 Charge Pump PLL 의 최적설계에 관한 연구)

  • Woo, Young-Shin;Jang, Young-Min;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.479-485
    • /
    • 2001
  • In this paper, we introduce a charge pump phase-locked loop (PLL) architecture which employs a precharge phase frequency detector (PFD) and a sequential PFD to achieve a high frequency operation and a fast acquisition. Operation frequency is increased by using the precharge PFD when the phase difference is within $-{\pi}{\sim}{\pi}$ and acquisition time is shortened by using the sequential PFD and the increased charge pump current when the phase difference is larger than ${\pm}{\pi}$. So error detection range of the proposed PLL structure is not limited to $-{\pi}{\sim}{\pi}$ and a high frequency operation and a higher speed lock-up time can be achieved. The proposed PLL was designed using 1.5 ${\mu}m$ CMOS technology with 5V supply voltage to verify the lock in process. The proposed PLL shows successful acquisition for 200 MHz input frequency. On the other hand, the conventional PLL with the sequential PFD cannot operate at up to 160MHz. Moreover, the lock-up time is drastically reduced from 7.0 ${\mu}s\;to\;2.0\;{\mu}s$ only if the loop bandwidth to input frequency ratio is regulated by the divide-by-4 counter during the acquisition process. By virtue of this dual PFDs, the proposed PLL structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

An Ultra Small Size Phase Locked Loop with a Signal Sensing Circuit (신호감지회로를 가진 극소형 위상고정루프)

  • Park, Kyung-Seok;Choi, Young-Shig
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.479-486
    • /
    • 2021
  • In this paper, an ultra small phase locked loop (PLL) with a single capacitor loop filter has been proposed by adding a signal sensing circuit (SSC). In order to extremely reduce the size of the PLL, the passive element loop filter, which occupies the largest area, is designed with a very small single capacitor (2pF). The proposed PLL is designed to operate stably by the output of the internal negative feedback loop including the SSC acting as a negative feedback to the output of the single capacitor loop filter of the external negative feedback loop. The SSC that detects the PLL output signal change reduces the excess phase shift of the PLL output frequency by adjusting the capacitance charge of the loop filter. Although the proposed structure has a capacitor that is 1/78 smaller than that of the existing structure, the jitter size differs by about 10%. The PLL is designed using a 1.8V 180nm CMOS process and the Spice simulation results show that it works stably.

A DLL-Based Frequency Synthesizer for Generation of Various Clocks (가변 클록 발생을 위한 DLL 주파수 합성기)

  • 이지현;송윤귀;최영식;최혁환;류지구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1153-1157
    • /
    • 2004
  • This paper describes a new programmable DLL_based frequency synthesizer. Generally, PLLs have been used for frequency synthesis. Inherent fast locking DLLs are also used for frequency synthesis. However, DLL needs a frequency multiplier for various frequencies. A conventional frequency multiplier used in DLL has a restriction in which a multiple is fixed. However, the proposed DLL can generate clocks which are from 6 times to 10 times of the reference clock. Frequency range of the proposed DLL is from 600MHz to 1GHz. The idea has been confirmed by HSPICE simulations in a $0.35-\mu\textrm{m}$ CMOS process.

10 GHz Phase look loop using a four-wave-mixing signal in semiconductor optical amplifier (반도체 광증폭기에서 발생된 4광파 혼합 신호를 이용한 10GHz 위상 동기 루프)

  • 김동환;김상혁;조재철;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.507-511
    • /
    • 1999
  • A 10 GHz timing extracted signal which is phase-locked to a 10 Gbit/s mode-locked optical fiber laser pulse train is obtained using a tour-wave-mixing signal in semiconductor optical amplifier. The phase-locked loop wm, demonstrated ~Llccessful1y over 8 hours and found to have the lock-in frequency range of 30 KHz. 0 KHz.

  • PDF

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

A Design of PLL for 6 Gbps Transmitter in Display Interface Application (디스플레이 인터페이스에 적용된 6 Gbps급 송신기용 PLL(Phase Locked Loop) 설계)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • Recently, frequency synthesizers are being designed in two ways narrow-band loop or dual-loop for wide-band to reduce the phase noise. However, dual-loop has the disadvantage of center frequency mismatch and requiring an extra loop. In this paper, we propose a new structure that supports a range of 800Mhz ~ 3Ghz with multiple control of the single-loop frequency synthesizer without another loop. The control voltage of the VCO(coarse, fine) will be fixed, and finally the VCO will have a low Kvco. The frequency synthesizer is simulated using UMC $0.11{\mu}m$ process, proposed frequency synthesizer can be used in a variety of applications in the future.

A CMOS Phase-Locked Loop with 51-Phase Output Clock (51-위상 출력 클록을 가지는 CMOS 위상 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.408-414
    • /
    • 2014
  • This paper proposes a charge-pump phase-locked loop (PLL) with 51-phase output clock of a 125 MHz target frequency. The proposed PLL uses three voltage controlled oscillators (VCOs) to generate 51-phase clock and increase of maximum operating frequency. The 17 delay-cells consists of each VCO, and a resistor averaging scheme which reduces the phase mismatch among 51-phase clock combines three VCOs. The proposed PLL uses a 65 nm 1-poly 9-metal CMOS process with 1.0 V supply. The simulated peak-to-peak 지터 of output clock is 0.82 ps at an operating frequency of 125 MHz. The differential non-linearity (DNL) and integral non-linearity (INL) of the 51-phase output clock are -0.013/+0.012 LSB and -0.033/+0.041 LSB, respectively. The operating frequency range is 15 to 210 MHz. The area and power consumption of the implemented PLL are $580{\times}160{\mu}m^2$ and 3.48 mW, respectively.

Design of Ku-Band Phase Locked Harmonic Oscillator (Ku-Band용 위상 고정 고조파 발진기 설계)

  • Lee Kun-Joon;Kim Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.49-55
    • /
    • 2005
  • In this paper, the phase locked harmonic oscillator(PLHO) using the analog PLL(Phase Locked Loop) is designed and implemented for a wireless LAN system. The harmonic oscillator is consisted of a ring resonator, a varactor diode and a PLL circuit. Because the fundamental fiequency of 8.5 GHz is used as the feedback signal for the PLL and the 2nd harmonic of 17.0 GHz is used as the output, a analog frequency divider for the phase comparison in the PLL system can be omitted. For the simple PLL circuit, the SPD(Sampling Phase Detector) as a phase comparator is used. The output power of the phase locked harmonic oscillator is 2.23 dBm at 17 GHz. The fundamental and 3rd harmonic suppressions are -31.5 dBc and -29.0 dBc, respectively. The measured phase noise characteristics are -87.6 dBc/Hz and -95.4 dBc/Hz at the of offset frequency of 1 kHz and 10 kHz from the carrier, respectively.

A Method to Improve the Performance of Phase-Locked Loop (PLL) for a Single-Phase Inverter Under the Non-Sinusoidal Grid Voltage Conditions (비정현 계통 전압하에서 단상 인버터의 PLL 성능 개선 방법)

  • Khan, Reyyan Ahmad;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.231-239
    • /
    • 2018
  • The phase-locked loop (PLL) is widely used in grid-tie inverter applications to achieve a synchronization between the inverter and the grid. However, its performance deteriorates when the grid voltage is not purely sinusoidal due to the harmonics and the frequency deviation. Therefore, a high-performance PLL must be designed for single-phase inverter applications to guarantee the quality of the inverter output. This paper proposes a simple method that can improve the performance of the PLL for the single-phase inverter under a non-sinusoidal grid voltage condition. The proposed PLL can accurately estimate the fundamental frequency and theta component of the grid voltage even in the presence of harmonic components. In addition, its transient response is fast enough to track a grid voltage within two cycles of the fundamental frequency. The effectiveness of the proposed PLL is confirmed through the PSIM simulation and experiments.