• Title/Summary/Keyword: frequency problem

Search Result 3,569, Processing Time 0.033 seconds

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts Up (센터 베어링으로 지지된 추진축을 갖는 구동계의 차량 출발시 진동해석)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.929-934
    • /
    • 2002
  • This paper considers the vibration Problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we developed an one d.o.f model which describes the radial motion of the center bearing. We found out that the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the feint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks (극직교 이방성 회전원판의 진동특성 및 임계속도)

  • Koo, Kyo-Nam;Han, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF

Stiffener Layout Optimization to Maximize Natural Frequencies of a Curved Three-Dimensional Shell Structure (구부러진 3차원 박판 구조물의 고유 진동수 극대화를 위한 보강재 배치 최적화)

  • Lee, Joon-Ho;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.954-957
    • /
    • 2004
  • Based on the authors' previous work, where a geometric constraint handling technique for stiffener layout optimization problem using geometry algorithms was proposed, stiffener layout optimization to maximize natural frequencies of a curved three-dimensional shell structure was performed with a projection method. The original geometry of the shell structure was first projected on a two-dimensional plane, and then the whole optimization process was performed with the projected geometry of the shell except that the original shell structure was used for the eigenproblem solving. The projection method can be applied to baseline structures with a one-to-one correspondence between original and projected geometries such as automobile hoods and roofs.

  • PDF

An Optimal Design of the Rotor of BLDC Motors for Noise Reduction (BLDC 모터의 소음 저감을 위한 로터부 구조 최적설계)

  • Kim, Ji-Hoon;Ko, Kang-Ho;Kim, Min-Soo;Heo, Seoung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.972-975
    • /
    • 2004
  • In order to reduce the noise of BLDC motor, a systematic optimization procedure for rotor structure is presented. The noise index is defined as the sum of volume velocity of FE-model that are calculated at the dominant frequencies during dehydration process, which is based on the principle of radiation simple volume source. Then, the five design variables are selected to represent the shape and layout or rotor structure. This discrete design optimization problem for minimizing the noise index is solved by 3-level orthogonal array based effect analysis. Finally, the response surface method (RSM) combined optimization approach is employed for more refining the approximate optimum.

  • PDF

A Study on the Determination Vibration criteria for High Technology Facilities using FRF - Impact Test- (주파수 응답함수를 이용한 고정밀장비의 진동 허용규제치 결정기법에 관한 연구)

  • 이홍기;박해동;김두훈;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.377-385
    • /
    • 1996
  • In the case of a precision equipment, it requires a vibration free environment to provide its proper function. Especially, lithography and inspection devices, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved giga class semiconductor wafers. This high technology equipments require very strict environmental vibration standard in proportion to the accuracy of the manufacturing, inspecting devices. The vibration criteria are usually obtained either by the real vibration exciting test on the equipment or by the analytical calculation. the former is accurate but requires a great deal of time and efforts while the latter lacks reliability. this paper proposes a new method to solve this problem at a time. the permissible vibration level to a precision equipment can be easily obtained by analyzing a process of Frequency Response Function. This paper also demonstrates its effectiveness by applying the proposed method to finding the vibration criteria of a Computer Hard Disk Drive by impact Test.

  • PDF

Substructure Analysis of Steering System using Transfer Function Synthesis Method (전달함수합성법을 이용한 스티어링 시스템의 부분구조 해석)

  • Hong, Sung-Kyu;Kim, Do-Youn;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.201-206
    • /
    • 2000
  • In this work transfer function synthesis method based on FRF data of each substructure is investigated for a complex structure composed of many substructures. Though the transfer function synthesis method has superiority to analyze the characteristics of interfaces among substructures effectively, many problems arise in the computation process, especially matrix inversion process. Due to computational problems, the error between the data obtained by test and the predictions through computations is inevitable. So in this paper, computational aspects in the transfer function synthesis method are examined through a steering system problem of passenger car. For the FBS method, frequency response functions of 3 substructures are measured experimentally. Effects of several parameters such as matrix inversion method, connection conditions between substructures and off-diagonal terms on system response are studied numerically.

  • PDF

A Study on the Biotelemetry using Infra-red Light (적외선을 이용한 생체신호의 원격측정에 관한 연구)

  • Huh, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.169-175
    • /
    • 1993
  • Recently, interest in infra-red(IR) telemetry has increased because of the entirely different propagation and reflection properties of IR light as compared to radiowaves. IR hardly penetrates most materials and is reflected from obstacles. An biotelemetry system using these characteristics of indirect transmitted IR lights was developed, in which 3 ECG's are multiplexed and modulated in PDM/PIM pulse sequence. This proto-type system enables us to realize the non-restraint measurement of biological signals. Compared with conventional radio telemetry, this technique has some merits such as no electromagnetic interference, no frequency allocation problem, no government control over transmission power.

  • PDF

Development and Evaluation of Advanced Telemetry System (개선된 텔레메트리 시스템 개발 및 평가)

  • 박차훈;서희돈;박종대
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2000
  • In this study, we fabricated the advanced telemetry system that transmitting media use radio frequency(RF) for the middle range measurement of the physiological signals and receiving media use optical for electromagnetic interference problem. The telemetry system within a size of 65$\times$125$\times$45mm consists of three parts: a RF transmitter, a optical receiver and a physiological signal processing CMOS one chip. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum which enables a comfortable bed-side telemetry system.

  • PDF

Mode Matching Technique in a Cylindrical Cavity with Center Wire

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.143-146
    • /
    • 2018
  • The eigen value problem of a coaxial cavity and a modified pill box cavity is investigated using the mode matching technique. The coaxial cavity has a cylindrical cavity with beam ports and center conductor. The pill box cavity is the same as a coaxial cavity without center conductor. The electric field and magnetic field are formulated in propagation region and resonance region. The boundary and orthogonal conditions are applied to the electric and magnetic fields. We derived the eigen value equation by the proposed procedure in a coaxial cavity and a modified pill box cavity. The electromagnetic field of the real structure is disturbed by the coaxial wire. The effect of the coaxial wire in pill box cavity with beam ports increase the dominant resonant frequency. The coaxial line method of the coupling impedance is not adequate for a cylindrical cavity. The results of the mode matching technique and simulation agree well. The results confirm the proposed formulation is valid.

three dimensional seismic analysis of liquid storage tanks considering liquid-structure-soil interaction (유체-구조물-지반 상호작용을 고려한 유체저장탱크의 3차원 지진해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.99-106
    • /
    • 1999
  • In this study a base-isolated liquid storage tank subjected to seismic ground motion is numerically simulated on frequency , domain considering three-dimensional liquid-structure-soil interaction. A hybrid formulation which combines the versatility of finite elements for tank structure and the efficiency of boundary elements for liquid and soil region is adopted for efficient modeling. The base-isolation system using the effective stiffness and damping ratio is also included in this formulation. in order to demonstrate the accuracy and validity of the developed solution the numerical results were compared with the reference solutions in each interaction problem. The effects of the liquid filling ratio and the stiffness of base-isolation system on the behavior of the liquid storage tanks are analyzed.

  • PDF