• Title/Summary/Keyword: frequency parameter

Search Result 2,341, Processing Time 0.03 seconds

A Study on the Reliability Comparison of Median Frequency and Spike Parameter and the Improved Spike Detection Algorithm for the Muscle Fatigue Measurement (근피로도 측정을 위한 중간 주파수와 Spike 파라미터의 신뢰도 비교 및 향상된 Spike 검출 알고리듬에 관한 연구)

  • 이성주;홍기룡;이태우;이상훈;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.380-388
    • /
    • 2004
  • This study proposed an improved spike detection algorithm which automatically detects suitable spike threshold on the amplitude of surface electromyography(SEMG) signal during isometric contraction. The EMG data from the low back muscles was obtained in six channels and the proposed signal processing algorithm is compared with the median frequency and Gabriel's spike parameter. As a result, the reliability of spike parameter was inferior to the median frequency. This fact indicates that a spike parameter is inadequate for analysis of multi-channel EMG signal. Because of uncertainty of fixed spike threshold, the improved spike detection algorithm was proposed. It automatically detects suitable spike threshold depending on the amplitude of the EMG signal, and the proposed algorithm was able to detect optimal threshold based on mCFAR(modified Constant False Alarm Rate) in the every EMG channel. In conclusion, from the reliability points of view, neither median frequency nor existing spike detection algorithm was superior to the proposed method.

Dynamic Behavior of Laminated Orthotropic Cylindrical Shells (複合材 圓筒쉘의 動的 擧動 硏究)

  • 김천욱;김치균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1807-1815
    • /
    • 1992
  • The vibration characteristic of thin laminated orthotropic cylindrical shell is investigated based on the Donnell theory. The Rayleigh-Ritz variational procedure is employed. For the variety of shell end conditions, the beam characteristic function is used for the axial mode function. The result of the present analysis is in good agreement with some available analytical results and NASTRAN and BOSOR4 calculations. In the present study, the relation between natural frequencies and orthotropic parameter k is investigated. Introducing the frequency parameter, this study shows that the frequency parameter increases as the orthotropic parameter k approaches to one.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

Slip Frequency Andative Tunning for the Compensation of Rotor Resistance Variation of Induction Motor (유도전동기의 회전자저항 변동 보상을 위한 슬립주파수의 적응 조정)

  • 이일형;이윤종
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.42-48
    • /
    • 1994
  • A rotor flux error-based approach for correcting the rotor time constant estimation used in the slip frequency calculator of indirect field oriented controller is presented in this paper. The controller was derived from the d-q induction machine model. Slip frequency gain is dependent on the machine parameter errors. And parameter errors result in rotor flux error. Thus, estimated rotor flux is compared to commanded rotor flux. The error between them is used for the estimation of rotor time constant. Simulation results which demonstrate the performance of this approach are presented.

  • PDF

Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method (위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1149-1154
    • /
    • 2017
  • To obtain good recognition performance of speech recognition system under background noise, it is very important to select appropriate feature parameters of speech. The feature parameter used in this paper is Mel frequency cepstral coefficient (MFCC) with the human auditory characteristics applied to Wiener filter method. That is, the feature parameter proposed in this paper is a new method to extract the parameter of clean speech signal after removing background noise. The proposed method implements the speaker recognition by inputting the proposed modified MFCC feature parameter into a multi-layer perceptron network. In this experiments, the speaker independent recognition experiments were performed using the MFCC feature parameter of the 14th order. The average recognition rates of the speaker independent in the case of the noisy speech added white noise are 94.48%, which is an effective result. Comparing the proposed method with the existing methods, the performance of the proposed speaker recognition is improved by using the modified MFCC feature parameter.

The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line (기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향)

  • Yoon, S.J.;Son, B.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.

Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System (댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model (분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석)

  • Lee, Bok-Hee;Kim, Jong-Ho;Choi, Jong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.