• Title/Summary/Keyword: frequency offset tuning

Search Result 126, Processing Time 0.022 seconds

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Fully Differential 5-GHz LC-Tank VCOs with Improved Phase Noise and Wide Tuning Range

  • Lee, Ja-Yol;Park, Chan-Woo;Lee, Sang-Heung;Kang, Jin-Young;Oh, Seung-Hyeub
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.473-483
    • /
    • 2005
  • In this paper, we propose two LC voltage-controlled oscillators (VCOs) that improve both phase noise and tuning range. With both 1/f induced low-frequency noise and low-frequency thermal noise around DC or around harmonics suppressed significantly by the employment of a current-current negative feedback (CCNF) loop, the phase noise in the CCNF LC VCO has been improved by about 10 dB at 6 MHz offset compared to the conventional LC VCO. The phase noise of the CCNF VCO was measured as -112 dBc/Hz at 6 MHz offset from 5.5 GHz carrier frequency. Also, we present a bandwidth-enhanced LC VCO whose tuning range has been increased about 250 % by connecting the varactor to the bases of the cross-coupled pair. The phase noise of the bandwidth-enhanced LC-tank VCO has been improved by about 6 dB at 6 MHz offset compared to the conventional LC VCO. The phase noise reduction has been achieved because the DC-decoupling capacitor Cc prevents the output common-mode level from modulating the varactor bias point, and the signal power increases in the LC-tank resonator. The bandwidth-enhanced LC VCO represents a 12 % bandwidth and phase noise of -108 dBc/Hz at 6 MHz offset.

  • PDF

Design and Implementation of the new structural VCO with improved tuning range (Tuning range 개선을 위한 새로운 구조의 VCO 설계 및 제작)

  • Kang, Dong-Jin;Kim, Dong-Ok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.293-297
    • /
    • 2009
  • In this thesis, design of a VCO(Voltage controlled Oscillator) with a novel tuning mechanism is presented for the Radar system. This circuit, the 9.5 GHz oscillator is designed and implemented by restructuring microstrip resonator to raise Q value and to require a wide frequency tuning range. This product is fabricated on 2.6 Teflon substrate and device is NE722S01. In this paper, The new microstrip resonator VCO is proposed to achieve the characteristic of a wide frequency tuning range. This microstrip resonator VCO shows the phase noise characteristic of -108.3 dBc/Hz at 1 MHz offset from the fundamental frequency, the output power of 5.7 dBm and the second harmonic suppression of -38 dBc for the VCO are obtained. The manufacture VCO shows a frequency tuning range of 193.8 MHz. The proposed micro trip resonator VCO can be used for X-band Radar System with required tuning range.

  • PDF

An InGaP/GaAs HBT Monolithic VCDRO with Wide Tuning Range and Low Phase Noise

  • Lee Jae-Young;Shrestha Bhanu;Lee Jeiyoung;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • The InGaP/GaAs hetero-junction bipolar transistor(HBT) monolithic voltage-controlled dielectric resonator oscillator(VCDRO) is first demonstrated for a Ku-band low noise block down-converter(LNB) system. The on-chip voltage control oscillator core employing base-collector(B-C) junction diodes is proposed for simpler frequency tuning and easy fabrication instead of the general off-chip varactor diodes. The fabricated VCDRO achieves a high output power of 6.45 to 5.31 dBm and a wide frequency tuning range of ]65 MHz( 1.53 $\%$) with a low phase noise of below -95dBc/Hz at 100 kHz offset and -115 dBc/Hz at ] MHz offset. A]so, the InGaP/GaAs HBT monolithic DRO with the same topology as the proposed VCDRO is fabricated to verify that the intrinsic low l/f noise of the HBT and the high Q of the DR contribute to the low phase noise performance. The fabricated DRO exhibits an output power of 1.33 dBm, and an extremely low phase noise of -109 dBc/Hz at 100 kHz and -131 dBc/Hz at ] MHz offset from the 10.75 GHz oscillation frequency.

Incoherent Optical Signal Processor Using an Acousto-Optic Modulator and a Scanner (어쿠스토옵틱 광변조기와 스캐너를 사용한 인코히런트 광신호 처리기)

  • Park, Jin-Woo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.2016-2024
    • /
    • 1989
  • A versatile incoherent optical processing system is developed and analyzed in detail, in which an acousto-optic modulator is used to generate the temporal offset frequency for heterodyning and an optical scanner to process the input object in scanning mode. The operational characteristics of the systems are studied with respect to spatial filtering in terms of the spectral width change of the light source, the temporal offset frequency, and a scanning rate. To enhance the system's capability, two schemes for tuning the system's OTF, structural tuning and defocused object tuning, are also developed and verified with the MTF measurements and computer calculations.

  • PDF

An Efficient Coarse Tuning Scheme for Fast Switching Frequency Synthesizer in PHS Applications (PHS 어플리케이션에서의 빠른 스위칭 주파수 합성기를 위한 효율적인 Coarse Tuning 방법)

  • Park Do-Jin;Jung Sung-Kyu;Kim Jin-Kyung;Pu Young-Gun;Jung Ji-Hoon;Lee Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.10-16
    • /
    • 2006
  • This paper presents a fast switching CMOS frequency synthesizer with a new coarse tuning scheme for PHS applications. The proposed coarse tuning method selects the optimal tuning capacitances of the LC-VCO to optimize the phase noise and the lock-time. The measured lock-time is about $20{\mu}s$ and the phase noise is -121dBc/Hz at 600kHz offset. This chip is fabricated with $0.25{\mu}m$ CMOS technology, and the die area is $0.7mm{\times}2.1mm$. The power consumption is 54mW at 2.7V supply voltage.

A Ku-Band Hair-Pin Resonator Oscillator with a New Varactor Coupled Line Structure (개선된 바랙터 결합 선로를 이용한 Ku-Band 헤어핀 발진기 설계)

  • Choi, Kwang-Seok;Won, Duck-Ho;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • In this paper, we propose a new varactor coupled line structure and design the VCO using the proposed structure. The proposed coupled line structure removes the reflected signals from the varactor diode using an added $\lambda$/4 transmission line. The frequency synthesizers are designed using the PLL technique at Ku-band. The synthesizer using the proposed coupled structure has 38 MHz frequency tuning range and -97 dBc/Hz phase noise characteristic at 100 KHz offset frequency. The measured results show improved tuning range as well as the improved phase noise characteristics compared to the conventional designs.

Design of Voltage Controlled Oscillator using Miller Effect

  • Choi Moon-Ho;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.218-220
    • /
    • 2004
  • A new wide-band VCO topology using Miller capacitance is proposed. Contrary to conventional VCO using the Miller capacitance where the variable amplifier gain is negative, the proposed VCO uses both the negative and positive variable amplifier gain to enhance the frequency tuning range significantly. The proposed VCO is simulated using HSPICE. The simulations show that 410MHz and 220MHz frequency tuning range are obtained using the negative .and positive variable amplifier gain, respectively. The tuning range of the proposed VCO is $23\%$ of the center frequency(2.8GHz). The phase noise is -104dBc/Hz at 1MHz offset by simple model. The operating current is only 3.84mA at 2.5V power supply.

  • PDF

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

A 1 GHz Tuning range VCO with a Sigma-Delta Modulator for UWB Frequency Synthesizer (UWB 주파수 합성기용 1 GHz 광 대역 시그마 델타 성긴 튜닝형 전압 제어 발진기)

  • Nam, Chul;Park, An-Su;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.64-72
    • /
    • 2010
  • This paper presents a wide range VCO with fine coarse tuning step using a sigma-delta modulation technique for UWB frequency synthesizer. The proposed coarse tuning scheme provides the low effective frequency resolution without any degradation of phase noise performance. With three steps coarse tuning, the VCO has wide tuning range and fine tuning step simultaneously. The frequency synthesizer with VCO was implemented with 0.13 ${\mu}m$ CMOS technology. The tuning range of the VCO is 5.8 GHz~6.8 GHz with the effective frequency resolution of 3.9 kHz. It achieves the measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range 16.8 % with 5.9 mW power. The figure-of-merit with the tuning range is -181.5 dBc/Hz.