• Title/Summary/Keyword: frequency factor

Search Result 5,863, Processing Time 0.036 seconds

Determination of the Operating Frequency and Pipe Design of Inverter Air-conditioner considering Dynamic Characteristics of Inverter Rotary Compressor (진동 특성 파악을 통한 인버터 에어컨의 운전 주파수 및 파이프 형상 결정)

  • 모진용;이진교;박득용;김진섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.203-206
    • /
    • 2001
  • The reduction of chopping noise generated from inverter compressor and the piping design reducing vibration are the most important items in the quality of air conditioner. The chopping noise is identified by the study of the relationship between carrier frequency and natural frequency of the compressor shell. The high carrier frequency is the key factor in reduction of carrier noise. To keep the natural frequencies of the system as far as away from the operating frequencies appears to be the most important factor in the design of piping system.

  • PDF

Effect of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (계면상 조건과 단섬유 함유량이 단섬유 강화CR의 동적특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1151-1156
    • /
    • 2003
  • The dynamic properties of short-fiber reinforced Chloroprene rubber for vibration isolators have been studied as functions of interphase conditions and fiber content. The loss factor showed the maximum at strain amplitude 2%, and increased 0.09 for matrix, 0.05 for reinforced rubber with increasing frequency respectively. The dynamic ratio rapidly decreased with increasing strain amplitude, and some increased with increasing frequency. The better interphase condition showed the lower dynamic ratio. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio(${\sqrt{2}}min$.) compared to frequency ratio(${\sqrt{2}}max$.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.95-102
    • /
    • 2005
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed. mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

Study on The High Frequency Modulation Method for The Metal Halide Lamp Elec (메탈 할라이드 램프용 전자식 안정기의 고주파 변조 방식에 관한 연구)

  • Moon, Tae-Hwan;Oh, Duk-Jin;Kim, Hee-Jun;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.208-211
    • /
    • 2001
  • This paper presents the considerations of the high frequency modulation method for the metal halide lamp electronic ballast. The acousitc resonance phenomenon is occurred, if the metal halide lamp is driven at constant high frequency. The frequency modulation method therefore, is used to avoid the acoustic resonance phenomenon, but the crest factor of lamp current is increased. In this paper, the driving characteristic of the metal halide lamp according to the waveshape and frequency variations of modulating signal is considered with a viewpoint of crest factor.

  • PDF

Study of High-Power-Factor Single-Stage Electronic Ballast for fluorescent lamps (고역률 단일 전력단을 갖는 형광등용 전자식 안정기에 관한 연구)

  • Park, J.W.;Seo, C.S.;Ro, C.G.;Kim, D.H.;Lee, K.H.;Seo, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1129-1131
    • /
    • 2001
  • A new low cost single stage high power factor electronic ballast for fluorescent lamps is presented in this paper. The proposed topology is based on integration of two-boost converter and LC type high frequency resonant converter. A ballast is obtained by simple construction, because full bridge rectifier diode is eliminated and simple control circuits is applied. Using two boost converter operating positive and negative half cycle respectively at line frequency (60Hz), operating in discontinuous conduction mode performs high power factor. The simulated and experimental results for 64W fluorescent lamps operating at 45kHz switching frequency and 110V line voltage have been obtained.

  • PDF

Numerical Method for Computing the Resonant Frequencies and Q-factor in Microwave Dielectric Resonator

  • Kim, Nam-young;Yoo, Hojoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.245-248
    • /
    • 1997
  • The dielectric resonators(DRs) with dielectric properties are widely used in microwave integrated circuit(MICs) and monolithic microwave integrated circuits(MMICS). The variational method as numerical simulation scheme would be applied to calculate the resonant frequencies(fr) and Q-factors of microwave dielectric resonators. The dielectric resonator with a cylindrical “puck” structure of high dielectric material is modeled in this simulation. The parameters, such as the diameter, the height, and the dielectric constant of dielectric resonator, would determine the resonant frequency and the Q-factor. The relationship between these parameters would effect each other to evaluate the approximate resonant frequency. This simulation method by the variational formula is very effective to calculate fr, and Q-factor. in high frequency microwave dielectric resonator The error rate of the simulation results and the measured results would be considered to design the microwave dielectric resonators.

  • PDF

Sound Radiation due to Tire Tread Vibration (타이어 트레드의 진동에 의한 음향방사)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chung, Tae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.13-22
    • /
    • 1994
  • A theoretical model is studied to describe the sound radiation by the surface vibration of in-service tires. The tire is modeled as a circular ring model. The effects of normalized frequency and structrual loss factor are included. Through numerical integration of the sound pressure, the radiated sound power is calculated as a fuction of normalized frequency and structural loss factor. The basic sound radiation mechanism is shown to be the damped progressive wave field on the structure in the vicinity of the applied force. The results indicate that the potential sound reduction might be obtained if values of normalized frequency and structural loss factor are investigated.

  • PDF

Microwave dielectric properties of the BSST ceramics with BaO compositional ratio (BSST계 세라믹스의 BaO 조성비에 따른 마이크로파 유전특성)

  • 박인길;정장호;이성갑;이영희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.81-85
    • /
    • 1996
  • Microwave dielectric properties of 0.15(B $a_{x}$S $r_{0.05}$)O-0.15(S $m_{2}$(1-y)N $d_{2y}$) $O_{3}$-0.7Ti $o_{2}$(x=o.9~0.1[mol.], y=6[m/o]) ceramics were investigated with BaO compositional ratio. Sintered density and resistivity of specimens were independent on the BaO compositional ratio. In the specimen with x=0.975[mol.], dielectric constant, quality factor and temperature coefficient of resonant frequency had good values of 76.52, 3001(at 3[GHz]) and +0.71[ppm/.ceg. C], respectively. By comparing with the stoichiometric compositions of 78.14, 2938(at 3[GHz])+14.19[ppm/.ceg. C], dielectric constant and quality factor showed similar properties, but the temperature coefficient of resonant frequency was highly improved. (author). refs., figs., tabs.s.s.

  • PDF

Effects of Sr Substitution on the PSN-PMN-PZT Ceramics for High Frequency (고주파 필터용 PSN-PMN-PZT 세라믹스의 Sr 치환효과)

  • 오동언;민석규;류주현;박창엽;김종선;윤현상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.229-233
    • /
    • 2000
  • In this study, the temperature coefficient of resonant frequency($TCF_r$), dielectric and piezoelectric properties of $Pb_{1-x}Sr_x[(Sb_{1/2}Nb_{1/2})_{0.035}(Mn_{1/3}Nb_{2/3})_{0.065}(Zr_{0.49},Ti_{0.51})_{0.90}]O_3$ ceramics were investigated with the Sr substitution to Pb site. The dielectric constant was increased according to the increase of Sr substitution and electromechanical coupling factor($k_t$) also showed the highest values of 0.485 when the Sr substitution was 5 mol%. Moreover, the mechanical quality factor($Q_{mt}$) showed the highest value of 233 when the Sr substitution was 2 mol%.

  • PDF

A design of visual weighted quantizer for wavelet image compression (웨이브릿 영상 압축을 위한 인간 시각 가중 양자화기의 설계)

  • 엄일규;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.493-505
    • /
    • 1997
  • In this paper, a wavelet image compression method using human visually estimated quantizer is proposed. The quantizer has three components. These are constructed by using effects of frequency band, background luminance, and spatial masking. The first quantization factor is a fixed constant value for each band. The second factor is calculated by averaging four wavelet coefficients in the lowest frequency band. The third factor is determined by the difference between wavelet coefficients in the lowest frequency band. Arithmetic coding is used for encoding quantized wavelet coefficients. Coefficients in the lowest band are transmitted without loss. Therefore the compressed image is decompressed by using three quantization factors which can be calculated in the receiver. Compared with previous image compression methods which adopted human visual system, the proposed method shows improved results with less computational cost.

  • PDF