• Title/Summary/Keyword: frequency dispersion

Search Result 491, Processing Time 0.021 seconds

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

Leaky Dispersion Characteristics in Circular Dielectric Rod Using Davidenko's Method

  • Kim Ki Young;Tae Heung-Sik;Lee Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.72-79
    • /
    • 2005
  • The leaky dispersion characteristics of a circular dielectric rod were investigated using Davidenko's method for several lower-order transverse magnetic(TM) modes. The normalized complex propagation constants were precisely determined and their tolerances below $10^{-10}$ compared with zero for both real and imaginary parts. It was also checked whether the normalized complex propagation constants obtained represented forward leaky waves. The leaky modes existing below the cutoff frequency of the guided mode were classified as a nonphysical mode, reactive mode, antenna mode, and spectral gap based on a precise determination of the complex propagation constants. Finally, the effects of the dielectric constant and radius of the dielectric rod on the leaky dispersion characteristics were also considered.

Electromagnetic Analysis to Design Unclonable PUF Modeling (복제 방지용 PUF 모델링을 위한 전자계 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1141-1147
    • /
    • 2012
  • Electromagnetic analysis to design unclonable PUFs with frequency-dependant materials with Debye dispersion was considered. To simulate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface on dielectric substrate. The pulse traveling wave at a vacuum-medium interface was reflected, and transmitted wave was dissipated. As a result, 1-D PUF modeling with Debye dispersion on dielectric substrate structure can be applied and FDTD calculation for PUF modeling is a good approximation.

Joint inversion of Love Wave and Rayleigh Wave for Evaluating the Subsurface Stiffness Structure (지반 강성구조 평가를 위한 러브파와 레일리파의 동시역산해석)

  • Joh, Sung-Ho;Lee, Il-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.302-307
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. The fact that Love wave is not contaminated by P-wave which makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than the information of Rayleigh wave. Based on theoretical research, the joint inversion analysis which is used both Love wave dispersion information and Rayleigh wave dispersion information was proposed. Purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results utilizing that frequency contribution of each wave is different. This analysis technique is consisted of the forward modeling using transfer matrix, the sensitivity matrix determined to the ground system and DLSS(Damped Least Square Solution) as a inversion technique. The application of this analysis was examined through the field test.

  • PDF

Development of Microcomputer-Based On-Line Monitoring System of Spot Weld Quality (마이크로 컴퓨터를 이용한 온라인 점용접 품질 감시체제 개발에 관한 연구)

  • 김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.241-246
    • /
    • 1986
  • A new method of on-line monitoring of spot weld quality is proposed by analysing weld votage signal. Weld voltage signal has been modeled by autoregressive model which is suitable for on-line modeling scheme, and order of the model is determined by F-test. From the chosen model, strength. Upon experimental results, it has been shown that fundamental frequency dispersion of weld voltage can be used as a good parameter like maximum thermal expansion in on-line monitoring of spot weld quality. Microcomputer implementation of the proposed monitoring method is also developed and presented.

Single-mode Condition and Dispersion of Terahertz Photonic Crystal Fiber

  • Kim, Soan;Kee, Chul-Sik;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.97-100
    • /
    • 2007
  • We have investigated properties of a plastic photonic crystal fiber guiding terahertz radiations, THz photonic crystal fiber. The single-mode condition and dispersion of a plastic triangular THz photonic crystal fiber are investigated by using the plane wave expansion method and the beam propagation method. The THz photonic crystal fiber can perform as a single-mode fiber below 2.5 THz when the ratio of diameter (d) and period (${\Lambda}$) of air holes is less than 0.475. The THz photonic crystal fiber with ${\Lambda}=500{\mu}m$ and $d/{\Lambda}=0.4$ shows almost zero flattened dispersion behavior, $-0.03{\pm}0.02 ps/THz{\cdot}cm$, in the THz frequency range from 0.8 to 2.0 THz.

A Dynamic Variational-Asymptotic Procedure for Isotropic Plates Analysis (등방성 판의 동적 변분-점근적 해석)

  • Lee, Su-Bin;Lee, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2021
  • The present paper aims to set forth a two-dimensional theory for the dynamics of plates that is valid over a large range of excitation. To construct a dynamic plate theory within the long-wavelength approximation, two dimensional-reduction procedures must be used for analyzing the low- and high-frequency behaviors under the dynamic variational-asymptotic method. Moreover, a separate and logically independent step for the short-wavelength regime is introduced into the present approach to avoid violation of the positive definiteness of the derived energy functional and to facilitate qualitative description of the three-dimensional dispersion curve in the short-wavelength regime. Two examples are presented to demonstrate the capabilities and accuracy of all of the formulas derived herein by using various dispersion curves through comparison with the three-dimensional finite element method.

A Comparative Study of a New Approach to Keyword Analysis: Focusing on NBC (키워드 분석에 대한 최신 접근법 비교 연구: 성경 코퍼스를 중심으로)

  • Ha, Myoungho
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.33-39
    • /
    • 2021
  • This paper aims to analyze lexical properties of keyword lists extracted from NLT Old Testament Corpus(NOTC), NLT New Testament Corpus(NNTC), and The NLT Bible Corpus(NBC) and identify that text dispersion keyness is more effective than corpus frequency keyness. For this purpose, NOTC including around 570,000 running words and NNTC about 200,000 were compiled after downloading the files from NLT website of Bible Hub. Scott's (2020) WordSmith 8.0 was utilized to extract keyword lists through comparing a target corpus and a reference corpus. The result demonstrated that text dispersion keyness showed lexical properties of keyword lists better than corpus frequency keyness and that the former was a superior measure for generating optimal keyword lists to fully meet content-generalizability and content distinctiveness.

Interaction of Ion Cyclotron Electromagnetic Wave with Energetic Particles in the Existence of Alternating Electric Field Using Ring Distribution

  • Shukla, Kumari Neeta;Kumari, Jyoti;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.67-77
    • /
    • 2022
  • The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.

Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements (SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.299-310
    • /
    • 2003
  • In the evaluation of the subgrade stiffness structure by the SASW method, the calculation of the phase velocities is the important task controlling the reliability of the result. The interpretation of the phase spectrum should precede the phase-velocity calculation in the current practice of the SASW method. The difficulty involved in the interpretation prohibited the SASW method from being spread over to the industry. This study proposed a new method called the frequency-wave number technique, which is based on the frequency-wave number relationship of the surface wave in the multi-layered system. The frequency-wave number technique eliminates the expertise in the interpretation of the phase spectrum, automates the phase-velocity calculation and expedites the determination of the phase-velocity dispersion curve. To verify the validity of the proposed frequency-wave number method, the transfer function determined from the numerical simulation of the SASW measurements was used fir the calculation of the automatic calculation of the phase velocities and compared with the phase velocities by WinSASW employing the phase-unwrapping method. Also, the proposed method was applied to the real SASW measurements performed at$\bigcirc$$\bigcirc$area in GyeongGi-Do to see how the proposed method works with the real measurements.