• Title/Summary/Keyword: frequency constraints

Search Result 382, Processing Time 0.026 seconds

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

A Study on the Development of Harmonic Limit Device for Stabilizing Main Circuit Equipment of Train (열차운행 안정화를 위한 주회로 기기의 고조파 제한장치 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.853-861
    • /
    • 2018
  • This paper proposes the application of harmonic constraints to address the problems caused by abnormal voltage increases when electric railway vehicles are running. The AC line that supplies the train with power during operation is used to provide electricity of 25kV/60 Hz, but gradually the size and frequency of harmonics involved in the line are varied with the technological evolution of the railroad vehicle electrical equipment. An increase in heat losses due to the failure of the instrument transformer (PT), the main circuit device, which is a serious problem with the recent train safety operation, or to the main displacement voltage. When high frequency components are introduced through low frequency Transformers of the main circuit device, the high intensity of the components is caused by the high intensity of the core and the current flow of the parasitic core is increased, thus generating heat. To solve this problem, the recent adjustment of the sequence has applied artificial NOTCH OFF of the power converter. However, the method of receiving and controlling the OFF signal operates by interaction between the ground and the vehicle's devices, thus it is invalid in the event of failure, and an actual accident is occurring. Therefore, the harmonic currents were required to prevent possible flow of harmonics, and conducted a study to prevent accidental occurrence of train accidents and to verify feasibility of the device through the simulations of the train's experimental analysis and the simulations of the train for safe operation.

An Adaptive Resource Allocation Scheme in Cognitive Radio Network Assisted Satellite (무선 인지 네트워크에서 위성을 이용한 적응적인 자원 할당 기법)

  • Lee, Seon-Yeong;Sohn, Sung-Hwan;Jang, Sung-Jin;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.5-11
    • /
    • 2009
  • In this paper, we propose our design of adaptive resource allocation in the cognitive radio network assisted by satellite to improve the performance of Cognitive Radio user. Most of today’s telecommunication network operates in a fixed, licensed frequency band using a specific spectrum access network. However, the spectrum is not always used all the time, all the band. It causes the inefficiency in the spectrum usage. Thus, cognitive radio network is proposed to solve these spectrum inefficiency problems. The cognitive radio users (secondary users) are coexistent with primary users (PUs) who are licensed. That cognitive radio network is considered as lower priority comparing with primary user. So, the operation of the cognitive radio network is limited to interference constraints. Especially, when the number of secondary users increases, CCI among SUs will increase as well as interference to PU. That motivates our objective to improve the performance even if cognitive radio users increase. To solve this problem, we suggest an adaptive resource allocation scheme to improve the performance of cognitive radio network assisted by satellite. Through this algorithm, we can improve the cognitive radio network performance. And the simulation results confirm the effectiveness of our proposed algorithm.

  • PDF

A Single-End-Point DTW Algorithm for Keyword Spotting (핵심어 검출을 위한 단일 끝점 DTW알고리즘)

  • 최용선;오상훈;이수영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.209-219
    • /
    • 2004
  • In order to implement a real time hardware for keyword spotting, we propose a Single-End-Point DTW(SEP-DTW) algorithm which is simple and less complex for computation. The SEP-DTW algorithm only needs a single end point which enables efficient applications, and it has a small wont of computations because the global search area is divided into successive local search areas. Also, we adopt new local constraints and a new distance measure for a better performance of the SEP-DTW algorithm. Besides, we make a normalization of feature same vectors so that they have the same variance in each frequency bin, and each frame has the same energy levels. To construct several reference patterns for each keyword, we use a clustering algorithm for all training patterns, and mean vectors in every cluster are taken as reference patterns. In order to detect a key word for input streams of speech, we measure the distances between reference patterns and input pattern, and we make a decision whether the distances are smaller than a pre-defined threshold value. With isolated speech recognition and keyword spotting experiments, we verify that the proposed algorithm has a better performance than other methods.

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer

  • Choi, Kang-Woo;Yi, Kang;Kyung, Chong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5149-5167
    • /
    • 2017
  • Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

A study on optimum design of a lightweight mirror (경량화 반사경의 최적설계에 관한 연구)

  • 박강수;박현철;조지현;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • A study on optimum design of the lightweight mirror of a satellite camera is presented. An optical surface deformation of the lightweight mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, optimum design of the lightweight mirror is presented. Total weight of the mirror to reduce the optical surface deformation and the launching cost is used as an objective function. Peak-to-valley value and natural frequency of the mirror are given as constraints to the optimization problem. The sensitivities of the objective function and constraint are calculated by a finite difference method. The optimization procedure is carried out by the commercial optimizer, DOT. As a verification of the optimum design of the mirror, two design examples are treated. In the real application example, the lightweight mirror with 600mm effective diameter is treated. The optimized results with various design variables, which are obtained by considering thickness limitations, are analyzed.

Development of finite element analysis program and simplified formulas of bellows and shape optimization (벨로우즈에 대한 유한요소해석 프로그램 및 간편식의 개발과 형상최적설계)

  • Koh, Byung-Kab;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1195-1208
    • /
    • 1997
  • Bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axial symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis is developed to analyze various bellows. The validity of the developed program is verified by the experimental results for axial and lateral stiffness. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. The shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function by weighting factors. The stiffness, strength and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is selected to solve the problem. The results are compared to existing bellows, and the characteristics of bellows is investigated through optimal design process. The optimized shape of bellows is expected to give quite a good guideline to practical design.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF