• Title/Summary/Keyword: free-energy model

Search Result 555, Processing Time 0.028 seconds

Conformational Analysis of Some Antibacterial Agent 4-Aminodiphenyl Sulfones

  • Lee, Sung-Hee;Chung, Uoo-Tae;Kang, Young-Kee
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1990
  • Conformational free energy calculations using an empirical potential function (ECEPP/2) and hydration shell model were carried out on the four-4-aminodiphenyl sulfone analogues of 4, 4'-diamino-2' methyldiphenyl sulfone, 4, 2', 4-triaminodiphenyl sulfone, 4, 4'-diaminodiphenyl sulfone, and 4-aminodiphenyl sulfone as antibacterial agents on Mycobacterium lufu. The conformational energy was minimized from starting conformations which included possible combinations of torsion angles in the molecule. The conformational entropy change of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecule in aqueous solution, the contributions of water-accessible volume and the hydration free energy of each group or atom in the lowest-free-energy conformation was calculated and compared each other. From comparison of the computed lowest-free-energy conformations of four analogues with their antibacterial activities, it is known that the conformation and the hydrophobicity of sulfonyl group and its adjacent carbon atom in each compound are the essential factors to show the strong antibacterial activity.

  • PDF

New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis (풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구)

  • Shin Hyungki;Park Jiwoong;Kim Hogeon;Lee Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

Theoretical study of H2 evolution on N-doped monolayer graphene

  • Kim, Gye-Yeop;Han, Seung-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.485-487
    • /
    • 2014
  • Nitrogen이 도핑된 graphene에서의 hydrogen evolution에 대한 촉매효과에 대해서 연구를 진행하였다. Reaction free energy를 계산하기 위해서 많은 N-doped graphene 모델을 계산하였으며 pH 조건, silicon cathode의 영향 그리고 zero point energy의 효과를 고려하였다. Volcano plot에 의하면 "pyrol" like model과 N-doped armchair graphene model (aGNR-N1)이 좋은 촉매효과를 가짐을 밝혔다. 또한 free energy diagram을 통하여 "pyrol"과 "aGNR-N1"이 좋은 active site가 될 수 있음을 확인하였고 pH가 증가함에 따라 $H^+$의 에너지가 증가함에 따라 촉매 효과가 줄어듬을 확인하였다.

  • PDF

A Minimalist Model of Single Molecule Spectroscopy in a Dynamic Environment Studied by Metadynamics

  • Oh, In-Rok;Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.980-986
    • /
    • 2012
  • In this paper we develop a minimalist model of single molecule spectroscopy in a dynamic environment. Our model is based upon a lattice system consisting of a probe molecule embedded in an Ising-model like environment. We assume that the probe molecule interacts with the Ising spins via a dipole-dipole potential, and calculate free energy curves and lineshapes of the system. To investigate fluctuation behavior of the system we exploit the metadynamics sampling method. In particular, using the method, we calculate the free energy curve of magnetization of the lattice and that of the transition energy of the probe molecule. Furthermore, we compare efficiencies of three different sampling methods used; unbiased, umbrella, and metadynamics sampling methods. Finally, we explore the lineshape behavior of the probe molecule as the system undergoes a phase transition from a sub-critical and to a super-critical temperature. We show that the transition energy of a probe molecule is broadly distributed due to the heterogeneous, local environments.

Operation of Battery Energy Storage System for Governor Free and its Effect (주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과)

  • Cho, Sung-Min;Jang, Byung-Hoon;Yoon, Yong-Bum;Jeon, Woong-Jae;Kim, Chulwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

Free Energy and Hydration Free Energy of N-acetyl-N'-methylalaninamide

  • Young Kee Kang;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.495-499
    • /
    • 1991
  • The changes in the free energy and hydration free energy of N-acetyl-N'-methylalaninamide in the unhydrated and hydrated states were calculated with ECEPP/2 and the hydration shell model. The configurational entropy change of each conformation in both states were computed by a harmonic method. To understand the hydration structure of each hydrated conformation, the hydration-shell coordination numbers of functional. groups of the molecule were estimated from water-accessible volumes, and the contributions of water-accessible volume and polarization of each group to the hydration free energy were analyzed. The results show a reasonable agreement with those of recent theoretical studies and experiments.

Chip-Tool Friction and Shear Characteristics of Cold Drawn Free Machining Steels in Turning (냉각인발된 쾌삭강의 외경선삭시 칩-공구 마찰 및 전단 특성)

  • Lee, Young-Moon;Cho, Sam-Kyu;Choi, Soo-Joon;Song, Tae-Seong;Park, Tae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.198-203
    • /
    • 1999
  • In this study, chip-tool friction and shear characteristics of cold drawn free machining steels in turning were assessed. To do this, a newly developed equivalent oblique cutting model was adopted. And for comparison with those of free machining steels, chip-tool friction and shear characteristics of conventional carbon steels were also investigated. The Pb-S free machining steel shows superior machinability to others. In case of the Bi-S free machining steel, the shear stress and the specific friction energy are relatively lower than those of conventional carbon steels, but its shear strain is relatively high, so it does not show any remarkable improvement of machinability.

  • PDF

Energy-efficient full-duplex UAV relaying networks: Trajectory design for channel-model-free scenarios

  • Qi, Nan;Wang, Wei;Ye, Diliao;Wang, Mei;Tsiftsis, Theodoros A.;Yao, Rugui
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.436-446
    • /
    • 2021
  • In this paper, we propose an energy-efficient unmanned aerial vehicle (UAV) relaying network. In this network, the channels between UAVs and ground transceivers are model-free. A UAV acting as a flying relay explores better channels to assist in efficient data delivery between two ground nodes. The full-duplex relaying mode is applied for potential energy efficiency (EE) improvements. With the genetic algorithm, we manage to optimize the UAV trajectory for any arbitrary radio map scenario. Numerical results demonstrate that compared to other schemes (eg, fixed trajectory/speed policies), the proposed algorithm performs better in terms of EE. Additionally, the impact of self-interference on average EE is also investigated.

Conformational Analysis of Sulfonylureas (술포닐 우레아 유도체들의 형태분석)

  • Kang, Kee-Long;Lee, Sung-Hee;Chung, Uoo-Tae
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.518-528
    • /
    • 1992
  • To determine the optimal conformation of sulfonylureas, the correlation between conformation and hypoglycemic activity of the two sulfonylureas of tolbutamide and chlorpropamide as hypoglycemic agent was studied using an empirical potential function (ECEPP/2) and the hydration shell model in the unhydrated and hydrated states. The conformational energy was minimized from several starting conformations with possible torsion angles in each molecule. The conformational entropy change of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecules in aqueous solution, the contribution of water-accessible volume of each group or atom in the lowest-free-energy conformation was calculated and compared each other. From comparison of the computed lowest-free-energy conformations of two sulfonylureas, it could be suggested that the hydration of sulfonylurea moiety is related to increase the hypoglycemic activity. From the calculation results, it was known that the conformational entropy is the major contribution to stabilize the low-free-energy conformations of two sulfonylureas in unhydrated state. Whereas, in hydrated state, the hydration free energy largely contributes to the total free energies of low-free-energy conformations of tolbutamide and conformational entropy contributes to stabilize the low-free-energy conformations of chlorpropamide. The torsion angles from phenyl ring to urea moiety of the low-free-energy conformations of the two sulfonylureas were shown the nearly regular trend. On the basis of these results, the conformation exhibiting the optimal hypoglycemic activity of sulfonylureas and the binding direction to pancreatic receptor site A could be predicted. Also, according to the side chain lengthening of urea moiety, tolbutamide showed various conformational change. Therefore, steric effect may be important factor in the interaction between sulfonylureas and the putative pancreatic receptor.

  • PDF

Development of indirect EFBEM for radiating noise analysis including underwater problems

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.392-403
    • /
    • 2013
  • For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.