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1  |   INTRODUCTION

As an emerging technology, unmanned aerial vehicles (UAVs) 
are being developed for various applications, including UAV-
assisted smart city architectures, agriculture, and industrial 
development [1]. In particular, UAV-integrated communica-
tions have attracted significant research attention [1,2] (and 

the references therein), particularly for urgent or dangerous 
communication scenarios (eg, border detection and remote 
sensing). Such applications are facilitated by the low cost, de-
ployment flexibility, and full controllability in 3D airspaces 
of UAVs. Compared to terrestrial systems, UAV wireless sys-
tems offer several advantages, including superior link quality 
for communication channels [3] and greater link connection 
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flexibility [4]. Therefore, UAV-enabled communications are 
expected to improve network capacity and increase cell cov-
erage in emerging 5G networks [5]. In particular, UAV relay-
ing techniques have seen many applications for assisting in 
communication between two distant nodes [6–9]. Numerous 
investigations have been conducted both experimentally and 
theoretically. Experimentally, some UAV projects have cap-
tured videos over specified areas [8]. Theoretically, it has been 
verified that compared to direct base station (BS)-ground user 
transmissions, UAV relaying systems with appropriate UAV 
positioning can approximately double end-to-end capacity. 
The authors of [9] investigated the throughput maximization 
problem for half-duplex UAV relaying networks by jointly 
optimizing transmission power and UAV trajectories. It has 
been demonstrated that significant throughput gains can be 
achieved compared to the conventional static relaying mode.

Although UAV relaying techniques introduce many new 
opportunities, they also come with several shortcomings. In 
practice, a UAV has a finite flying duration determined by 
its practical weight and onboard battery capacity. Small- and 
medium-sized UAVs on the market today generally have a 
battery capacity of 2300 to 5400 mAh and maximum flight 
duration of 5 to 30 minutes [10–12]. Therefore, energy effi-
ciency (EE), which is measured as the number of successfully 
transmitted bits per unit energy, has become a key performance 
indicator. In [13–15] energy-efficient terrestrial half-duplex re-
laying (HDR) transmissions were investigated and transmission 
power was optimized. The EE maximization problem for slot-
ted transmissions was investigated in [15]. The authors of [16] 
and [17] focused on UAV trajectory design to maximize EE by 
considering the energy consumption of UAV propulsion sys-
tems. However, previous works have largely considered direct 
transmission scenarios. To improve the EE of UAV relaying 
networks, in addition to power management, two other aspects 
have been considered in [2,6,9,14,15,18] and [19]. One method 
is to optimize UAV flight mobility characteristics, including 
flight paths and speeds [2,9,14,18,20,21]. This method is moti-
vated by the fact that UAV flight behaviors are closely related to 
channel conditions. In particular, flight propulsion consumption 
accounts for a large proportion of overall energy consumption. 
The second method is to reduce data transmission durations 
by applying efficient communication techniques, such as full-
duplex (FD) mode, [20] where data receiving and transmitting 
are performed simultaneously. When the data transmission time 
is reduced, the duration of UAV task execution can also be re-
duced, providing a chance to reduce flight energy consumption.

For UAV-assisted communication systems, two types of 
channels are used: air-to-ground (ATG) and ground-to-air 
(GTA) channels. ATG and GTA propagations are more com-
plicated in urban environments than in rural areas. Consider 
an ATG channel as an example, radio signals propagate 
through free space until they reach an urban environment, 
where shadowing and scattering are caused by complex 
terrain structures. The authors of [21–23] established a 

simplified probabilistic mean path loss model using the aver-
ages of line-of-sight (LoS) or non-LoS channel gains [21,23]. 
In [21] and [22], the probability of having an LoS connection 
between a ground user and UAV was characterized based 
on the elevation angle between the user and UAV. In [23], 
channel gain was modeled based on the statistical parameters 
of underlying urban environments, including the statistical 
distribution of building heights and number of buildings per 
unit area. However, these studies were performed based on 
coarse-grained terrain structures and failed to exploit fine-
grained propagation conditions. Fined-grained channel con-
ditions are difficult to characterize mathematically based on 
a few factors. First, channel gains consist of multiple atten-
uations, including large-scale path loss and shadowing, as 
well as small-scale fading caused by multipath propagations. 
In urban areas, channel gains may have a complex structure 
based on the irregular shapes of terrain. Second, additional 
random interferences are induced by other devices that com-
municate at the same frequency.

Although UAV trajectory optimization problems have been 
extensively investigated in delay-tolerant networks [2,6,9,14,18–
21], previous studies have mainly focused on specific channel 
models or statistical distributions. For channel-model-free sce-
narios, it is impossible to derive exact channel model expres-
sions. Therefore, traditional model-driven algorithms such as 
the convex-based algorithm [14] and rapidly exploring random 
trees algorithm [24] are not applicable. Alternatively, as evolu-
tionary algorithms, genetic algorithms (GAs) provide heuristic 
search methods. A GA is essentially an iteration-based optimi-
zation technique that learns from past iterations and evolves 
over time. Although they are simple in design, GAs have been 
demonstrated to be efficient for solving a series of complex 
and non-deterministic problems. Therefore, GAs have attracted 
significant research attention and have been applied in various 
engineering fields (eg, function optimization [25], automatic 
control [26], and image manipulation [27]).

In particular, GAs have been extensively studied in wireless 
communication resource management problems [28], where 
their advantages in terms of finding close-to-optimal solutions 
for various optimization problems with low complexity are par-
ticularly useful [29] (and the references therein). The authors 
of [30] studied UAV-assisted caching networks using GAs. 
Numerical results demonstrated that compared to traditional 
strategies, GAs can better solve the probabilistic caching place-
ment problem by maximizing the average service success prob-
ability in heterogeneous wireless networks. The authors of [28] 
optimized the location of an FD relay node to minimize outage 
probabilities for faraway users in a cognitive system. In [28] 
and [31], relay problems with discrete and continuous variables 
were investigated. In [31], a two-hop HDR multi-session routing 
scheme was studied, where a moving relaying vehicle was de-
ployed to deliver data for isolated communities formed follow-
ing disasters. The relay scheduling problem can be formulated 
as an integer programming problem and solved efficiently using 
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a GA. In [28], the authors investigated how to minimize deploy-
ment costs and improve quality of service performance. A GA 
was also applied to find discrete solutions. Similar to [31], the 
authors of [32] designed a data-ferry-UAV traveling policy for 
disaster-affected areas. Specifically, BSs rely on a flyby UAV to 
collect, carry, and transmit data periodically to a core network. 
A UAV visiting sequence that minimized the overall energy 
consumption for data delivery was also designed. The authors 
of [33] investigated the age-optimal trajectory planning prob-
lem in UAV-enabled data collection networks. In this problem, 
a UAV flies at a constant flight velocity while collecting data 
from ground nodes. The UAV visiting sequence is optimized 
using a GA and dynamic programming method.

Related works in [31,33,34], and [35] considered a ded-
icated message ferry network. However, the data transmis-
sion quality and UAV energy costs were not considered. EE 
performance was ignored, and a potential energy-efficient 
full-duplex relaying (FDR) scheme was not exploited. 
Additionally, the data transmission rate is closely related to 
the UAV position because channel quality is affected by the 
UAV position. However, this aspect was not considered in 
[31,35]. Although the authors of [32] combined trajectories 
with design metrics, they mainly focused on UAV visiting 
sequences, which are not applicable to relaying systems.

1.1  |  Our contributions

Among UAV trajectory planning problems, we observed that 
energy-efficient FDR UAV trajectory planning in channel-
model-free networks is still an open issue. In this study, we 
attempted to optimize FDR UAV trajectories without relying 
on channel model assumptions.

Specifically, our main contributions can be summarized 
as follows:

1.	 An FDR UAV relaying scheme is proposed for a channel-
model-free scenario and an FDR UAV EE optimization 
problem is formulated.

2.	 We propose a GA to search intelligently for near-optimal 
UAV trajectories. The convergence behaviors of the GA 
are analyzed, revealing that the GA works well for the 
FDR UAV EE optimization problem.

3.	 The advantages of the proposed scheme over fixed-
speed/trajectory policies and HDR models are demon-
strated. Additionally, the impact of the self-interference 
(SI) cancelation factor is also analyzed. The results indi-
cate that our scheme outperforms other FDR benchmark 
schemes and yields more than five-fold EE gains for sce-
narios with small SI cancelation factors.

The remainder of the paper is organized as follows. Section 
II details out system model. The FDR UAV EE optimization 

problem is formulated in Section III. Problem solving based on 
a GA is presented in Section IV. Numerical results are presented 
and analyzed in Section V. Section VI concludes this paper.

2  |   SYSTEM MODEL

We consider a scenario in which a rotary-wing UAV is dis-
patched as a flying relay to communicate with multiple ground 
nodes sequentially. Therefore, multiple flight periods with 
various durations are considered [36]. Without loss of general-
ity, we consider the flight period from one given takeoff point 
to one destination as an illustrative example. The reasons why 
a UAV has a final destination point are outlined below. (1) In 
practice, final UAV locations depend on UAV launching/land-
ing locations and their pre- and post-mission flying paths [9]; 
(2) based on practical limitations in terms of size, weight, and 
onboard battery capacity, a UAV has a finite service duration 
[20]; (3) when in flying mode, a UAV has advantages com-
pared to the hovering mode in terms of EE performance [36].

As shown in Figure 1, severe path loss or physical obsta-
cles are present between S1 and S2. A rotary-wing UAV acts 
as a mobile relay to assist in message transmission. To exploit 
relaying capacity fully and enhance data transmission EE, an 
FDR scheme is designed for a UAV. The UAV is equipped 
with two antennas: one receiving and one transmitting an-
tenna. The rotary-wing UAV flies within a specified aerial 
area for a predetermined duration to assist in relaying signal 
transmissions. One complete transmission consists of two 
phases: S1-UAV first-hop transmission and the UAV-S2 data 
forwarding phase. We provide detailed explanations of these 
phases in Sections 2.1 and 2.2, respectively. Additionally, we 
assume that the UAV has a global positioning system and can 
automatically follow a predetermined trajectory [37].

Let the time horizon T  represent the flight period from S1 
to S2. For mathematical tractability, we uniformly discretize 
T  into M time intervals with durations of Δm = T∕M . Based 

F I G U R E  1   Full-duplex UAV-assisted relaying system
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on the existence of processing delays, received signals can-
not be immediately forwarded. Here, we set the processing 
delay to � time intervals (ie, � ⋅ tm s). For ease of analysis 
and without loss of generality, we let � be an integer. The 
lengths of each segment, denoted as DDm(m = 1, 2,…, M), 
are not necessarily identical and can vary the flying veloc-
ity in each segment.

In practical scenarios, channel power gain is a superpo-
sition of small and large fading phenomena, which are both 
considered in our model. It is a function of 3-tuple variables, 
including location X, frequency f , and time t. The channel 
power gain in the ith transmission phase is denoted as (i = 1 
and 2 represent the first and second phases respectively, which 
will be illustrated in Sections 2.1 and 2.2, respectively).

where � i(X, f , t) is the channel gain that combines various fad-
ing phenomena, excluding free-space path loss. [di(X,f,t)]-ai(X,f ,t) 
represents the free-space path loss, ai(X, f , t) is the exponent, 
di(X, t) is the communication distance, and K =

PL(d0)

da
0

 is a con-
stant used in the log-distance path loss model, where PL(d0) is 
the linear path loss at a reference distance d0. Without loss of 
generality, K is normalized to unity. It should be noted that the 
set of gi(X, f , t)(∀X, f , t) describes a radio map of an aerial area 
for a given spectrum and time horizon.

For ease of expression, in the following discussion, we 
consider one sample (ie, a given combination (X, f , m)) as an 
example to illustrate data transmission. Therefore, (1) can be 
reduced to

where |� i(x, y, m) |2 is the channel power gain at point (x, y) in 
the mth time interval, and di,m and ai,m are the line-of-sight com-
munication distance and exponent in the mth time interval of 
the i th transmitting phase (i = 1 and 2).

2.1  |  S
1
-UAV data transmission

The signal received at a UAV can be formulated as

where the first term is the signal from S1 at the beginning of 
the m th time interval, the second term is the SI, and P1 and 

Pr represent the data transmitting powers at S1 and the UAV 
relay, respectively. k0 and hrr are the SI cancelation factor and 
small-channel fading of the UAV SI channels, respectively. n1 
is the additive white Gaussian noise (AWGN) at the UAV with 
a mean power of �1

2.
Because there is a processing delay at the UAV, received 

signals cannot be immediately forwarded. Here, we set the 
processing delay to � time intervals (ie, � T

M
 s). The decoding-

and-forwarding relaying protocol is adopted. Specifically, 
when the UAV can successfully decode a received signal, the 
forwarded signal from the UAV to S2 in the mth time interval 
is St,m−� (ie, Sr,m = St,m−�).

The S1-UAV signal-to-interference ratio in the mth time 
interval is calculated as.

Then, the channel capacity is calculated as.

2.2  |  UAV-S2 signal forwarding

The signal received at S2 is

where n2 is the AWGN at S2.
It can be derived that the SINR at S2 in the m th time in-

terval is.

Based on the transmission delay of � time intervals, we 
have C2,m = 0 when m = 1, 2, ... , �. Therefore, the channel 
capacity of the UAV-S2 link can be calculated as follows:

3  |   EE OPTIMIZATION PROBLEM 
FORMULATION

We aim to maximize overall EE by optimizing UAV trajecto-
ries under the UAV mobility constraints. The objective func-
tion, denoted as �EE, is defined as

(1)gi(x, f , t) =
|� i(X, f , t) |2

K[di(X, t)]−ai(X,f ,t)
,

(2)gi,m = |� i(x, y, m) |2d
−ai,m

i,m
,

(3)

yr,m =

√
P1|�1 (x, y, m) |2d

−a1,m

1,m
St,m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Transmitted signal from S1

+

√
Pr

||hrr
||2 k0Sr,m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

UAV self - interference

+n1, m=1, 2,…, M,

(4)SINR1,m =
P1 |�1(x, y, m) |2d

−a1,m

1,m

k0Pr
||hrr

||2 + �1
2

.

(5)C1,m = Blog2(1 + SINR1,m).

(6)yS2
=

√
Pr |�2(x, y, m) |2d

−a2,m

2,m
St,m−� + n2, m = 1, 2, . . . , M,

(7)SINR2,m =
Pr |�2(x, y, m) |2d

−a2,m

2,m

�2
2

.

(8)C2,m =

{
0, when m=1, 2, . . . , �,

Blog2(1+SINR2,m), otherwise.

(9)�EE =

∑
M−1
m= �

Rm∑
M−1
m= �

Ptot,m

,
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where Rm and Ptot,m are the data transmission rate and overall 
power consumption in the m th time interval, respectively.

In the following subsections, the objective function and 
constraints are formulated in detail.

3.1  |  Sum-capacity formulation

Let C�
1,m

Δm represent the bit budget (upper bound of the num-
ber of transmitted bits in the mth time interval) of the UAV, 
including any bits accumulated prior to the mth time interval 
and the newly received bits in the mth time interval. The num-
ber of accumulated bits received prior to the mth time inter-
val can be calculated as max{(C

�
1,m−1

Δ
m−1−C2,m−1Δm−1), 0}

. Additionally, the number of newly received bits in the mth 
time interval is C1,mΔm. Then, we have the following recur-
sive expressions:

where Δm is the duration of the m th time interval. Without loss 
of generality, we set Δ1 = Δ2 = . . . = Δm = Δ = T∕M.

Information causality requires that the number of trans-
mitted bits in the mth time interval must be less than or equal 
to C�

1,m
Δm (ie, RmΔm ≤ C�

1,m
Δm). Additionally, the Shannon 

capacity theory requires that RmΔm ≤ C2,mΔm, or equiva-
lently, Rm ≤ C2,m. To optimize EE, Rm should be maximized 
as

This is because the number of bits can be increased to 
the maximum allowable value without decreasing the ob-
jective value or violating the information causality con-
straint. Therefore, Rm is driven to reach its upper bound (ie, 
min

{
C
′
1,m

, C2,m

}
).

In Sections 3.2 and 3.3, Ptot,m and the aforementioned con-
straints, respectively, are introduced in detail.

3.2  |  Overall power consumption 
formulation

Overall power consumption consists of UAV propulsion, SI 
cancelation, and communication consumption. We only focus 
on the first component here because it is much larger than the 

other two components, as discussed in [36]. The UAV power 
model presented in [36] was adopted in this study. The flight 
distance of the m th time interval is

where Dx,m = xm − xm−1, Dy,m = ym − ym−1, and m = 1, 2, . . . , M . 
Additionally, the flying speed in the m th time interval is 
given as

where vx,m and vy,m are the speeds along the X and Y axes in 
the m th time interval, respectively. Additionally, we define 
vx = {vx,1, vx,2,…, vx,M}, and vy = {vy,1, vy,2,…, vy,M}.

Let P0 and Pi represent the blade profile power and in-
duced power, respectively, which can be formulated as [36]

where � is the profile drag coefficient, � is the air density, s is 
the rotor radius, A is the rotor disk area, Ω is the blade angular 
velocity in radians, R0 is the rotor radius (measured in meters), 
kh is the incremental correction factor for the induced power, 
and W is the aircraft weight in Newtons.

The overall power consumption is calculated as

where Utip and v0 are the tip speed of the rotor and mean rotor 
induced velocity in the hovering state, respectively, and � is the 
fuselage drag ratio.

3.3  |  Constraint formulation

3.3.1  |  Constraints on the data 
transmission rate

As discussed in Section 3.1, (14) must be satisfied.

3.3.2  |  Constraints on UAV mobility behavior

In practice, the UAV's starting and ending points are prede-
termined and depend on various factors such as the UAV's 
takeoff/landing locations, as well as its mission flying path. 
The initial location (x0, y0, H) and end location (xM , yM , H) 
must satisfy

(10)C�
1,1
Δ1 = C1,1Δ1,

(11)C�
1,2
Δ2 = C1,2Δ2 + C1,1Δ1,

(12)C
�
13
Δ3 =C1,3Δ3+max

{(
C
�
1,2
Δ2−C2,2Δ2

)
, 0

}
,

(13)C
�
1,m

Δ
m
=C1,mΔm

+max

{(
C
�
1,m−1

Δ
m−1−C2,m−1Δn−1

)
, 0

}
,

(14)R
m
= min

{
C
�
1,m

, C2,m

}
.

(15)DDm =

√
(xm − xm−1)2 + (ym − ym−1)2,

(16)vm =
DDm

T∕M
=
√

v2
x,m

+ v2
y,m

,

(17)P0 =
�

8
�sAΩ3R3

0
, Pi = (1 + kh)

W3∕2

√
2�A

,

(18)

E
tot
=

M∑
m= �

[
P0

(
1+

3DD
2
m

U
2
tip
⋅T

2∕. M
2

)
+

P
i
v0

DD
m

T

M

+
1

2
��sA

DD
3
m

T
3

M
3

]
,
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Additionally, the UAV flying speed is bounded by a max-
imum value of Vmax. It is required that

3.4  |  Optimization problem

When Vx and Vy are given, a trajectory can be determined. In 
other words, optimizing the trajectory is equivalent to deriv-
ing the optimal velocity vector.

Our optimization problem aims to search for the optimal 
velocity vector such that EE can be maximized as

4  |  PROBLEM SOLVING USING A GA

4.1  |  Objective function and constraint 
transformation

In the following analysis, a penalty method is applied to 
convert the constrained optimization problem into an uncon-
strained problem. In this section, we define two penalty func-
tions that describe violations of constraints (20) and (22).

First, let f1 denote the penalty for a trajectory policy if 
it violates (20). f1 is defined by the Normalized value of 
(vm − Vmax) if |vm | > Vmax. This value indicates the extent to 
which the flying speed violates constraint (20). It should be 
noted that the expression of f1 is not unique. In the following 
analysis, f1 is defined as

where Ṽ is the maximum flying speed among M intervals for 
one trajectory, meaning

Here, �̃� is the maximum flying speed among all intervals 
in multiple trajectory policies and c1 is introduced as a posi-
tive value so that the denominator in (23) is positive. It should 
be noted that c1 = | �̃� − �max | such that the impact of c1 on f1

can be ignored. Based on the above analysis, it can be con-
cluded that f1 ∈ [0, 1).

For any trajectory policy, if it ends with a position other 
than the destination, a penalty is imposed on the policy. The 
distance offset is normalized. Specifically, we let f2 ∈ [0, 1] 
indicate the extent to which a trajectory violates constraint 
(22). f2 = 1 represents the maximum distance offset among 
all populations. Specifically, f2, is formulated as follows:

where D̃M is the maximum offset of 
(
xM , yM

)
 relative to 

(
xz, yz

)
 

among the multiple trajectory policies in (22) and c2 is intro-
duced as a positive value so that the denominator in (25) is pos-
itive. It should be noted that c2 ≪ D̃M such that c2 has a very 
limited impact on f2.

Let c4 and c5 represent the penalty coefficients for f1 and 
f2, respectively. The weighted EE for a single trajectory, de-
noted as �(w)

EE
, is calculated as

where �max and �min are the maximum and minimum EE val-
ues, respectively, and c3 is a small positive constant. Here, 
�max − �min + c3 is introduced to guarantee that at least one pol-
icy will be finalized if constraints (20) and (22) are violated. 
Additionally, the expression of �(w)

EE
 is not unique and there may 

be numerous variations in (26).
In summary, the trajectory optimization problem P1 can 

be converted into an unconstrained optimization problem P2 
as follows:

The optimal trajectory solution is denoted as.

The optimal solution must satisfy �(w)

EE
(I ∗ ) = �EE(I ∗ ). This 

is because in an optimal solution, the constraints must be sat-
isfied, leading to zero penalties in terms of EE.

4.2  |  GA design

In this section, a GA is applied to solve P2. The basic concept 
is to generate a population of candidate trajectory policies 
and let them evolve through crossover and mutation opera-
tions such that the trajectory policies converge toward better 
solutions and an optimal solution can be gradually approx-
imated. We first provide detailed definitions of a chromo-
some, population, and the fitness function in problem P2.

(19)x0 = xs, y0 = ys, xM = xZ , yM = yZ .

(20)DD
m
≤Vmax

T

M

, ∀m, m=1, 2,…, M.

(21)P1: max
Vx,Vy

�EE =

∑M

m= �
Rm∑M

m= �
Ptot,m

s. t. [20],

(22)xs ≤ xm ≤ xz, ys ≤ ym ≤ yz, m ∈ {1, 2,…, M}.

(23)f1 =max

{
�̃−�max

|�̃� −�max|+c1

, 0

}
,

(24)Ṽ = max
{√

v2
x,1

+ v2
y,1

,

√
v2

x,2
+ v2

y,2
,⋯,

√
v2

x,M
+ v2

y,M

}
.

(25)f2 =

√
(xM − xz)

2 + (yM − yz)
2

D̃M + c2

,

(26)�
(w)

EE
= �EE − (�max − �min + c3) ⋅ (c4f1 + c5f2),

(27)P2: max
V

x
,V

y

�
(w)

EE
.

(28)I ∗ = argmax(�
(w)

EE
).
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Chromosome: The vector of flying velocity in the X and 
Y  axes (ie, ℂ

1×2M =
[
vx,1, vx,2,…, vx,M , vy,1, vy,2,…, vy,M

]
). 

The length of a chromosome is 2M.
Population: The set of chromosomes. A population of 

size Np is denoted as ℙN
P
× 2M =

[
ℂ1,ℂ2,…,ℂ

N
P

]T, where 
[⋅]T is a transpose operator.

Fitness function: The value of the objective function (ie, �(w)

EE
).

The evolution process involves coding, selection, re-
combination, and mutation. By merging chromosomes from 
parents and offspring, new chromosomes are generated and 
the population is updated. The steps listed above are then 
repeated until the number of generations reaches a prede-
termined number, after which the chromosome with the max-
imum fitness value is selecting as the final flying velocity 
vector. The details of this process are discussed below.

1.	 Coding: We use binary coding to map flying velocities 
into binary symbol sequences (ie, a string of 0s and 1s)

2.	 Selection: An elitist selection method is applied. This 
means that in each generation, the worst individual is re-
moved from the population. The other chromosomes un-
dergo recombination and mutation. The best chromosome 
with the largest fitness function value is recorded and re-
tained in the next generation without any modification.

3.	 Recombination: We use a two-point intersection method 
to obtain new individuals via gene exchange. The prob-
ability of variation for each chromosome is denoted as Prc.

4.	 Mutation: After recombination, individuals undergo mu-
tations. The probability of variation for each gene is de-
noted as Prv.

Algorithm 1 summarizes the process of the proposed tra-
jectory optimization strategy.

Algorithm 1 Energy-efficient FDR UAV with a GA

Input:
Randomly generated initial chromosomes and population Q0; Initial 
generation index: Ng = 1; T , M, Np, c1, c2, c3, c4, c5, Prc, Prv.

Output:
The best individual I ∗;
	 1.	 while = Ng ≤ 300& | 𝜂EE(Ng)− 𝜂EE(Ng −1)

𝜂EE(Ng)
| > 10−3 do

	 2.	 Obtain fitness values by computing �(w)

EE
 in the Ng th generation 

(ie, �(w)

EE
(Ng));

	 3.	 Record the best individual I ∗
Ng

= argmax(�
(w)

EE
(Ng));

	 4.	 Select (Np − 1) individuals with high fitness values in the Ng th 
generation, the set of which is denoted as Q1(Ng);

	 5.	 Recombine individuals in Q1(Ng) and obtain a new individual 
set Q2(Ng + 1). The number of individuals in Q2(Ng + 1) is 
identical to that in Q1(Ng);

	 6.	 Mutate: Each individual in Prv, Prc;
	 7.	 The set of all new individuals is denoted as Q3(Ng + 1);
	 8.	 A new generation, denoted as Q(Ng + 1), is formed by 

integrating I ∗
Ng

 into Q3(Ng + 1);
	 9.	 Ng = Ng + 1;
	10.	 end while
	11.	 I ∗ = I ∗

Ng

5  |   NUMERICAL RESULTS

In this section, we present analytical results. Additionally, EE 
under the FDR scheme is compared with that under the HDR 
scheme.

The parameter settings use the values listed in Table 1 un-
less otherwise specified. Without loss of generality, the UAV 
departure point is set to (0, 3000) and the intended destination 
is set to (1000, 3000). Additionally, for all of the analyzed 
schemes, the overall UAV flight duration is set to T = 25 s, 
which is discretized into M = 25 segments of equal length. 
The settings of the parameters in (17) and (18) are also ad-
opted in the method from [36]. Detailed channel power gains 
for the target two-dimensional space are available online 
(please access [38] with the code “8pao”). Without loss of 
generality, we assume that |�1(x, y, m) |2 = |�2(x, y, m) |2 .∀m . 
In the file, [38] the value in the ith row and jth column rep-
resents the channel power gain at point (xi, yj) (measured in 
meters), while the channel power gains in other locations are 
approximated based on those of their closest neighboring 
nodes in the data file.

5.1  |  Data illustrations

In Figure  2, the numbers of accumulated bits that a UAV 
receives, transmits, and buffers are presented. The follow-
ing observations can be obtained. (1) At any moment, the 
“received by UAV” curve coincides with the “trx + buffer” 
curve, indicating that the accumulated received bit number 
is equal to the sum bits of forwarded and buffered at the 
UAV. Therefore, information conservation is maintained. 
(2) At any moment, the accumulated forwarded bit number 
is smaller than the received bit number, which demonstrates 
that information causality is maintained. (3) The accumu-
lated buffered bit number first increases and then decreases 
to zero. This is because initially, the UAV is close to the 
source node, but far from the destination node, resulting in 
a better first-hop channel compared to the UAV forward-
ing channel. Additionally, the first-hop channel capacity 
is greater than the UAV forwarding channel capacity. The 
received bits accumulated at the UAV must wait to be for-
warded later. As the UAV flies closer to the destination, the 
UAV forwarding channel becomes stronger than the first-
hop channel, leading to a greater forwarding (for outgoing 
data) channel capacity compared to the first-hop (for incom-
ing data) channel capacity. Therefore, the number of buff-
ered bits decreases.

In Figure 3, the UAV trajectory in the X − Y  plane and 
flying speed in each time interval are presented. In Figure 3 
(a), one can see that the optimized trajectory begins from the 
departure point (ie, (0, 3000)) and ends at the intended desti-
nation (ie, (1000, 3000)). Therefore, constraint (19) is satis-
fied. Additionally, in Figure 3 (b), one can see that |vm | ≤ 80 
m/s (∀m), implying that constraint (20) is also satisfied.
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5.2  |  Performance comparisons

To demonstrate the advantages of the proposed FDR UAV 
scheme, Figure 4 presents EE comparisons between FDR and 
HDR schemes. Under the HDR scheme [13], the UAV receives 
data in the first half of each time interval and forwards data in 
the latter half of each time interval. Generally, the HDR curve 
is a horizontal line because in the HDR scheme, no SI exists 
and EE is not affected by the value of k0. The fluctuation in 
the “HDR + Optimal Trajectory” curve is caused by the GA's 
randomness. One can see that the FDR scheme outperforms 
the HDR scheme when the SI cancelation factor varies be-
tween 10−6 and 10−3. This is because in scenarios with small 
SI cancelation factors, the FDR scheme can achieve a higher 
transmission rate and time efficiency, which is very beneficial 
in terms of energy saving and EE improvements. However, 
as the SI cancelation factor increases, the advantages of FDR 
fade and it becomes even less energy efficient than the HDR 
scheme. This is because strong SI significantly deteriorates data 
transmission rates, resulting in a loss of EE. In a practical sce-
nario, the SI cancelation factor is generally less than 10−3.

Additionally, for the FDR scheme, to demonstrate the per-
formance superiority of our trajectory policy, the EE curves 
for three other benchmark FDR UAV polices are also pro-
vided: the “FDR  +  Straight Trajectory,” “FDR  +  Average 
Speed,” and “FDR + Average Speed + Same Route” poli-
cies. Let v∗

m
, v∗

x,m
, and v∗

y,m
 represent the optimal flying ve-

locity, flying velocity on the X axis, and flying velocity on 
the Y  axis, respectively, in the m th time interval under the 
“FDR + Optimal Trajectory” scheme.

Under the “FDR + Straight Trajectory” scheme, the UAV 
flies horizontally and directly along a line from the start-
ing point to the end point within T = 25 s. The flight speed 
of the “FDR  +  Straight Trajectory” can be calculated as 
|� �� �

m
| = Xz −X0

T
=

1000−0

25
= 40 m/s.

Under the “FDR + Average Speed” scheme, the flying ve-
locity in the mth time interval is denoted as |��

m
| =

√
��2

x,m
+ ��2

y,m
 . 

We require that (1) ��
m
=
∑M

m= 1
��∗

m
�∕M, ∀m, meaning the 

flying speed in all time intervals is consistent and takes the 

T A B L E  1   Parameter settings

Parameters Value Parameters Value

H 70 m Vmax 80 m/s

PS 0.8 W PR 1 W

T 25 s B 10 MHz

� 0.012 � 1.225

� 400 dB �2

1
= �2

2
10− 5

kh 0.1 W 100

A 0.79 s 0.05

Utip 200 v0 7.2

� 0.3 R0 0.5 W

Ω 400 c1 0.001

c2 0.001 c3 1

c4 5 c5 9

M 25 (X0, Y0) (0, 3000)

(XZ , YZ ) (1000, 3000) a1,m = a2,m 2

Prc 90% Prv 100%

hSS = hDD = hRR 0.8 N
g,max 300

� 1

F I G U R E  2   Curves of accumulated numbers of bits at UAVs 
(received, transmitted (or trx), and buffered versus time). The 
SI cancelation factor k0 = 10− 5 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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value of the average speed of the “FDR + Optimal Trajectory.” 
(2) 

��
x,m

��
y,m

=
� ∗

x,m

� ∗
y,m

, which guarantees that the bending angle at each 
knee of the curve is identical to that of the “FDR + Optimal 
Trajectory.” (3) Each time interval must have the same dura-
tion (ie, T∕M = 1s).

Under the “FDR  +  Average Speed  +  Same Route” 
scheme, we require that (1) the flight route is identical 
to that of the “FDR  +  Optimal Trajectory” scheme. (2) 
� ��

m
=
∑M

m= 1
��∗

m
�M, ∀m.

One can clearly see that our “FDR + Optimal Trajectory” 
scheme outperforms the other FDR benchmark schemes and 
yields more than five-fold EE gains when k ≤ 10−4. The rea-
sons for this performance improvement can be summarized 
as follows. Unlike the other schemes, in the “FDR + Optimal 
Trajectory” scheme, the flight speeds and directions in all 
time intervals are jointly maximized. This is because the elit-
ist selection method allows high-quality trajectories to remain 
for subsequent evolution. As evolution proceeds, high-quality 
trajectories evolves toward the optimal solution. In contrast, 
under the “FDR + Average Speed + Same Route” scheme, the 
flight speed is not optimized, while under the “FDR + Straight 
Trajectory” and “FDR + Average Speed” schemes, neither the 
speed nor direction are optimized. Therefore, these schemes 
perform worse than our “FDR + Optimal Trajectory” scheme.

5.3  |  Convergence behavior analysis

Convergence curves are provided in Figure 5. Iteration stops 
if the predetermined objective function tolerance is satisfied 
or the maximum iteration number is reached. Specifically, it-
eration stops if Ng ≤ 300 or | �EE(Ng)− �EE(Ng −1)

�EE(Ng)
| ≤ 10−3, where 

10−3 is the predetermined tolerance. Iteration stops at the 80 
th generation (ie, 80 iterations). Therefore, the GA converges 
well for our optimization problem.

Additionally, it should be noted that the weighted EE 
is no greater than the EE of the best individual, meaning 
�

(w)

EE
≤ �EE . As iteration proceeds, the weighted EE and �EE 

curves overlap, indicating that (20) and (22) are satisfied and 
no penalties are imposed on the objective function.

6  |   CONCLUSIONS

An energy-efficient FDR UAV scheme was investigated in 
this study. Given an arbitrary radio map, we optimized UAV 
trajectories under specific constraints for flight behavior and 
information causality. A GA was designed for our optimi-
zation problem, which is applicable to any superposition of 
small and large fading phenomenon. Numerical results dem-
onstrated that the proposed FDR scheme outperforms HDR 
schemes and other FDR benchmark schemes. Additionally, 
the proposed method exhibited desirable convergence 
behaviors.
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