DOI QR코드

DOI QR Code

Energy-efficient full-duplex UAV relaying networks: Trajectory design for channel-model-free scenarios

  • Qi, Nan (The Key Laboratory of Dynamic Cognitive Systems of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Wei (The Key Laboratory of Dynamic Cognitive Systems of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Ye, Diliao (Telefonaktiebolaget LM Ericsson) ;
  • Wang, Mei (The Key Laboratory of Dynamic Cognitive Systems of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Tsiftsis, Theodoros A. (The Institute of Physical Internet, Intelligent Systems Science, and Engineering, Jinan University (Zhuhai Campus)) ;
  • Yao, Rugui (School of Electronics and Information, Northwestern Polytechnical University)
  • Received : 2020.02.26
  • Accepted : 2020.11.25
  • Published : 2021.06.01

Abstract

In this paper, we propose an energy-efficient unmanned aerial vehicle (UAV) relaying network. In this network, the channels between UAVs and ground transceivers are model-free. A UAV acting as a flying relay explores better channels to assist in efficient data delivery between two ground nodes. The full-duplex relaying mode is applied for potential energy efficiency (EE) improvements. With the genetic algorithm, we manage to optimize the UAV trajectory for any arbitrary radio map scenario. Numerical results demonstrate that compared to other schemes (eg, fixed trajectory/speed policies), the proposed algorithm performs better in terms of EE. Additionally, the impact of self-interference on average EE is also investigated.

Keywords

Acknowledgement

National Natural Science Foundation of China (No. 61801218, 61871327, 61941104, 61827801), Natural Science Foundation of Jiangsu Province (No. BK20180424), and Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology (No. KF20181917).

References

  1. F. Qi et al., UAV network and IoT in the sky for future smart cities, IEEE Netw. 33 (2019), no. 2, 96-101. https://doi.org/10.1109/mnet.2019.1800250
  2. L. Gupta, R. Jain, and G. Vaszkun, Survey of important issues in UAV communication networks, IEEE Commun. Surveys Tuts. 18 (2016), no. 2, 1123-1152. https://doi.org/10.1109/COMST.2015.2495297
  3. A. Carrascocasado, R. Vergaz, and J. M. Sanchez Pena, Design and early development of a UAV terminal and a ground station for laser communications, in Proc. SPIE Int. Soc. Opt. Eng. 8184 (2011), no. 4, 361.
  4. J. Tang, L. Fan, and S. Lao, Collision avoidance for Multi-UAV based on geometric optimization model in 3D airspace, Arab. J. Sci. Eng. 39 (2014), 8409-8416. https://doi.org/10.1007/s13369-014-1368-0
  5. B. Li, Z. Fei, and Y. Zhang, UAV communications for 5G and beyond: Recent advances and future trends, IEEE Internet Things J. 6 (2019), 2241-2263. https://doi.org/10.1109/JIOT.2018.2887086
  6. C. Cheng et al., Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm, in Proc. IEEE Wirel. Commun. Netw. Conf. (Hong Kong, China), Mar. 2007, pp. 4417-4424. doi: 10.1109/WCNC.2007.805
  7. https://spectrum.ieee.org/automaton/consumer-electronics/gadgets/mit-builds-drone-based-rfid-relay-to-track-boxes-in-warehouses
  8. http://alpine-robotics.com/projects/future/flying-relay-station/
  9. Y. Zeng, R. Zhang, and T. J. Lim, Throughput maximization for UAV-enabled mobile relaying systems, IEEE Trans. Commun. 64 (2016), no. 12, 4983-4996. https://doi.org/10.1109/TCOMM.2016.2611512
  10. https://dronerush.com/product/parrot-anafi/
  11. https://dronerush.com/yuneec-drones-guide-wind-9821/
  12. https://dronerush.com/product/dji-mavic-2-zoom/
  13. N. Qi et al., Efficient coded cooperative networks with energy harvesting and transferring, IEEE Trans. Wirel. Commun. 16 (2017), no. 10, 6335-6349. https://doi.org/10.1109/TWC.2017.2722438
  14. Q. Wu, Y. Zeng, and R. Zhang, Joint trajectory and communication design for multi-UAV enabled wireless networks, IEEE Trans. Wirel. Commun. 17 (2018), no. 3, 2109-2121. https://doi.org/10.1109/twc.2017.2789293
  15. W. Wang and H. Yang, Effect of imperfect spectrum sensing on slotted secondary transmission: Energy efficiency and queuing performance, IEEE Trans. Cogn. Commun. Netw. 4 (2018), 764-772. https://doi.org/10.1109/tccn.2018.2874457
  16. Y. Zeng and R. Zhang, Energy-efficient UAV communication with trajectory optimization, IEEE Trans. Wirel. Commun. 16 (2017), no. 6, 3747-3760. https://doi.org/10.1109/TWC.2017.2688328
  17. C. Zhan, Y. Zeng, and R. Zhang, Energy-efficient data collection in UAV enabled wireless sensor network, IEEE Wirel. Commun. Lett. 7 (2018), no. 3, 328-331. https://doi.org/10.1109/LWC.2017.2776922
  18. M. Hua et al., Outage probability minimization for low-altitude UAV-enabled full-duplex mobile relaying systems, China Commun. 15 (2018), 9-24. https://doi.org/10.1109/CC.2018.8387983
  19. Y. Zeng, R. Zhang, and T. J. Lim, Wireless communications with unmanned aerial vehicles: Opportunities and challenges, IEEE Commun. Mag. 54 (2016), 36-42.
  20. N. Qi et al., Energy efficient full-duplex UAV relaying networks under load-carry-and-delivery scheme, IEEE Access 8 (2020), 74349-74358. https://doi.org/10.1109/access.2020.2986349
  21. M. Alzenad et al., 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage, IEEE Trans. Wirel. Commun. 6 (2017), 434-437. https://doi.org/10.1109/LWC.2017.2700840
  22. M. Mozaffari et al., Optimal transport theory for power-efficient deployment of unmanned aerial vehicles, in Proc. IEEE Int. Conf. Commun. (ICC), (Kuala Lumpur, Malaysia), May 2016, pp. 1-6, https://doi.org/10.1109/ICC.2016.7510870
  23. S. K. Al-Hourani and S. Lardner, Optimal lap altitude for maximum coverage, IEEE Wirel. Commun. Lett. 3 (2014), no. 6, 569-572. https://doi.org/10.1109/LWC.2014.2342736
  24. S. Bhandari and T. Srinivasan, Path-planning around obstacles for a quadrotor UAV using the RRT algorithm for indoor environments, in Proc. AIAA Infotech (San Diego, CA, USA), Jan. 2016, https://doi.org/10.2514/6.2016-2196
  25. H. Liu et al., Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications, Optics Commun. 390 (2017), 76-81. https://doi.org/10.1016/j.optcom.2016.12.065
  26. G. Shahgholian et al., A novel approach in automatic control based on the genetic algorithm in statcom for improvement power system transient stability, in Proc. Int. IEEE Conf. Intell. Syst. (Varna, Bulgaria), Sepr. 2008, pp. 4-14-4-19, https://doi.org/10.1109/IS.2008.4670419
  27. S. Hashemi et al., An image contrast enhancement method based on genetic algorithm, Pattern Recogn. Lett. 31 (2010), no. 13, 1816-1824. https://doi.org/10.1016/j.patrec.2009.12.006
  28. P. Devarasetty and S. Reddy, Genetic algorithm for quality of service based resource allocation in cloud computing, Evol. Intel. (2019), 1-7.
  29. M. Nitti et al., When social networks meet D2D communications: A survey, Sensors 19 (2019), no. 2, 396. https://doi.org/10.3390/s19020396
  30. X. Lin, J. Xia, and Z. Wang, Probabilistic caching placement in UAV-assisted heterogeneous wireless networks, Physical Commun. 33 (2019), 54-61. https://doi.org/10.1016/j.phycom.2019.01.004
  31. K. Anazawa et al., Trajectory and data planning for mobile relay to enable efficient internet access after disasters, in Proc. IEEE Glob. Commun. Conf. (GLOBECOM) (San Diego, CA, USA), Dec. 2015, pp. 1-6, doi: 10.1109/GLOCOM.2015.7417170
  32. Y. A. Sambo et al., Energy minimization UAV trajectory design for delay-tolerant emergency communication, in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), (Shanghai, China), May 2019, pp. 1-6, doi: 10.1109/ICCW.2019.8757127
  33. J. Liu et al., Age-optimal trajectory planning for UAV-assisted data collection, in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), (Honolulu, HI, USA), Apr. 2018, pp. 553-558, https://doi.org/10.1109/INFCOMW.2018.8406973
  34. S. Bisen and A. V. Babu, Outage analysis of underlay cognitive NOMA system with cooperative full duplex relaying, Transac. Emerg. Telecommun. Technol. (2019), e3701.
  35. M. Harounabadi, M. Bocksberger, and A. Mitschele-Thiel, Evolutionary path planning for multiple UAVs in message ferry networks applying genetic algorithm, in Proc. IEEE Annual Int. Symp. Pers., Indoor Mob. Radio Commun. (PIMRC), (Bologna, Italy), Sept. 2018, pp. 1-7, doi: 10.1109/PIMRC.2018.8580936
  36. Y. Zeng, J. Xu, and R. Zhang, Energy minimization for wireless communication with rotary-wing UAV, IEEE Trans. Wirel. Commun. 18 (2019), no. 4, 2329-2345. https://doi.org/10.1109/twc.2019.2902559
  37. https://dronerush.com/yuneec-drones-guide-wind-9821/
  38. https://pan.baidu.com/s/1Wm3k8u_jjgOY3OvP4bW78A