• Title/Summary/Keyword: free vibration mode shapes

Search Result 239, Processing Time 0.023 seconds

Vibration Characteristics of Conical Shells with Linearly Varying Thickness (선형적으로 두께가 변하는 원추형 셸의 진동특성)

  • Yeo, D.J.;Cho, I.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.35-40
    • /
    • 2008
  • This paper deals with the free vibrations of conical shells with linearly variable thickness by the transfer influence coefficient method. The classical thin shell theory based upon the Flugge theory is assumed and the governing equations of a conical shell are written as a coupled set of first order matrix differential equations using the transfer matrix. The Runge-Kutta-Gill integration method is used to solve the governing differential equation. The natural frequencies and corresponding mode shapes are calculated numerically for the conical shells with linearly variable thickness and various boundary conditions at the edges. The present method is applied to conical shells with linearly varying thickness, and the effects of the semi-vertex angle, the number of circumferential waves and thickness ratio on vibration are studied.

  • PDF

Prediction of Resonance Frequency rind Mode Shape of Rotor in Switched Reluctance Motor

  • Ha, Kyung-Ho;Jeong, Seung-Kyu;Hong, Jung-Pyo;Kang, Do-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.19-23
    • /
    • 2002
  • This paper investigates the influence of various stator pole shapes and yoke structures in Switched Reluctance Motors (SRM) on the mechanical behavior caused by the electromagnetic farce. The stator part in SRM produces most vibration. The geometric design of the stator is therefore necessary to reduce the vibration. Based on electromagnetic and structural Finite Element Method (FEM), the free and farced vibrations for the various structures of SRM with 6/4 poles are analyzed. Then a less vibration stator structure is proposed. Some of numerical computations for a prototype motor are verified by experimental results.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

Free Vibrations of Tapered Columns with Constant Volume (일정체적 변단면 기둥의 자유진동)

  • 이병구;이태은;최규문;송주한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • The main purpose of this paper is to determine the dynamic optimal shapes of tapered column with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta method and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the tapered columns are analysed and the numerical result of this study are shown in table and figures.

  • PDF

A Free Vibration Analysis of the Continuous Circular Cylindrical Shell with the Multiple Simple Supports Using the Receptance Method (동적응답법을 이용한 다점 단순지지된 연속원통셸의 자유진동 해석)

  • 이영신;한창환
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.998-1008
    • /
    • 2000
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell etc.. In this paper, a method for the free vibration analysis of the continuous circular cylindrical shells with the multiple simple supports is developed by using the receptance method. With this method, the vibrational characteristics of the continuous system is analyzed by considering as a combined structure. The system receptance is also derided by the application of the equilibrium of forces and the continuity of displacements at the support points. The natural frequencies and mode shapes are calculated numerically and they are compared with the FEM results to improve the reliability of analytical solution. Numerical results on the 4-equal-span continuous circular cylindrical shell are presented in this paper.

  • PDF

Condensation of independent variables in free vibration analysis of curved beams

  • Mochida, Yusuke;Ilanko, Sinniah
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • In this paper, the condensation method which is based on the Rayleigh-Ritz method, is described for the free vibration analysis of axially loaded slightly curved beams subject to partial axial restraints. If the longitudinal inertia is neglected, some of the Rayleigh-Ritz minimization equations are independent of the frequency. These equations can be used to formulate a relationship between the weighting coefficients associated with the lateral and longitudinal displacements, which leads to "connection coefficient matrix". Once this matrix is formed, it is then substituted into the remaining Rayleigh-Ritz equations to obtain an eigenvalue equation with a reduced matrix size. This method has been applied to simply supported and partially clamped beams with three different shapes of imperfection. The results indicate that for small imperfections resembling the fundamental vibration mode, the sum of the square of the fundamental natural and a non-dimensional axial load ratio normalized with respect to the fundamental critical load is approximately proportional to the square of the central displacement.

A study on natural frequencies and damping ratios of composite beams with holes

  • Demir, Ersin
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1211-1226
    • /
    • 2016
  • In this study, free vibration and damping characteristics of composite beams with holes are investigated, experimentally and numerically. Two types of samples with different fabrics are used: unidirectional and woven. The effects of diameter, number and location of circular holes on the vibration characteristics of composite beams are examined. The effects of rotation angle and minor to major diameter ratio of the elliptical hole are also investigated numerically. Moreover, the mode shapes of all types of beams are obtained numerically. According to the results, the natural frequency decreases with increasing hole diameter but increases very little with increasing the distance between the hole center and the clamped end. Damping ratio decreases by increasing the diameter of hole. But it fluctuates by increasing the diameters of holes of beam having three holes. Furthermore it decreases by increasing the distance between hole center and clamped end except for the range 50 mm to 100 mm.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.