• Title/Summary/Keyword: free vibration mode shapes

Search Result 239, Processing Time 0.024 seconds

Free Vibrations of Horizontally Curved Beams with Shear Deformation (전단변형을 고려한 수평곡선보의 자유진동)

  • Shin, Seong-Cheol;Park, Kou-Moon;Lee, Jong-Kook;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.395.1-395
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical deflection, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically fer parabolic curved beams with hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. (omitted)

  • PDF

Free vibration analysis of the isotropic hemi-spherical shell with various boundary condition (다양한 경계조건을 갖는 등방성 반구형셀의 자유진동해석)

  • Lee, Young-Shin;Kim, Hyun-Soo;Yang, Myung-Seog
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.831-836
    • /
    • 2000
  • In this study, the Rayleigh inextensional theory and extensional theory for thin shells was employed to predict the natural frequencies of the hemi-spherical shell with free and simply. supported boundary condition. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. Modal test and FEM analysis of the free, simply supported and clamped boundary condition was also carried out.

  • PDF

Free Vibration Analysis of a Simply-Supported Circular Plate with a Concentric Square Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 정사각형 구멍을 갖는 단순지지 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.967-972
    • /
    • 2008
  • This paper presents the free vibration analysis of a circular plate with a concentric square hole. The present problem deals with the numerical calculation of the natural frequencies and mode shapes of vibration of the structure by means of Independent Coordinate Coupling Method (ICCM). In this study, the boundary condition is the edge of the square hole is free and the outer circular plate is simply supported. Due to the geometric abnormality, this analysis does not permit an exact solution. Since the ICCM employs coordinate systems corresponding to each domain independently, the kinetic and potential energy expressions necessary for the Rayleigh-Ritz method can be easily obtained. Lastly, the kinematic relation is imposed. In this way, the eigenvalue problem can be easily set up. The numerical results show the efficacy of the ICCM and changes in natural frequencies and modes due to the square hole size.

  • PDF

Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation (회전관성과 전단변형을 고려한 수평 곡선보의 자유진동)

  • 이병구;모정만;이태은;안대순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.

Free vibration analysis of plates resting on elastic foundations using modified Vlasov model

  • Ayvaz, Yusuf;Oguzhan, Celal Burak
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.635-658
    • /
    • 2008
  • An application is presented of a modified Vlasov model to the free vibration analysis of plates resting on elastic foundations. The effects of the subsoil depth, the ratio of the plate dimensions, the ratio of the subsoil depth to the plate dimension in the longer direction, and the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on an elastic foundation are investigated. This analysis has been caried out by the aid of a computer program. The first ten frequency parameters are presented in tabular and the graphical forms to evaluate the effects of the parameters considered in this study. Then mode shapes corresponding to the first six of the frequency parameters are given in graphs. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on an elastic foundation is generally larger than those of the other parameters considered in this study.

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis (등기하해석법을 이용한 자유진동 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.

Free Vibration Analysis of Plane Structures with Isogeometric Concept (등기하개념을 이용한 평면구조물의 자유진동해석)

  • Lee, Sang-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.171-182
    • /
    • 2019
  • Isogeometric concept is introduced to carry out free vibration analysis of plane structures. The geometry of structures is represented by using non-uniform rational B-spline surface (NURBS) and its basis function is consistently used in the formulation of plane stress element. In addition, multi-patch strategy is introduced to deal with the openings in building. The performance of the present isogeometric plane stress element is investigated by using five numerical examples. From numerical results, it is found to be that the isogeometric concept can successfully identify reliable natural frequencies and associated mode shapes of plane structures with/without openings in efficient way.

Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides (양면에서 부분적으로 유체와 접하는 사각평판의 고유진동)

  • Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Kim, Tae-Wan;Park, Keun-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.123-130
    • /
    • 2008
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh-Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the contained water is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid-coupled natural frequencies comparing with the finite element analysis result.

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.225-235
    • /
    • 2017
  • In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.

Mode localization and veering of natural frequency loci in two circular plates coupled with a fluid

  • Jeong, Kyeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.719-739
    • /
    • 2006
  • An analytical method for the free vibration of two circular plates coupled with an inviscid and compressible fluid is developed by the Rayleigh-Ritz method. The fluid is bounded by a rigid cylindrical vessel and two circular plates with an unequal thickness and diameter. It was found that the theoretical results could predict well the fluid-coupled natural frequencies with an excellent accuracy when compared with the finite element analysis results. As the fluid thickness increases or the plate thickness difference increases, an abrupt curve veering in the natural frequency loci of the neighboring modes and drastic changes in the corresponding mode shapes are observed. The mode localization frequently appears in the higher modes and in the wide gap between the plates because of a decrease in the fluid coupling owing to the fluid dispersion effect.