• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.023 seconds

Vibration Characteristics of Thin-Walled Beams (두께가 얇은 단면을 갖는 보의 진동특성)

  • Oh, Sang-Jin;Lee, Jae-Young;Mo, Jeong-Man;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

Free vibration response of multi-layered plates with trigonometrically distributed porosity based on the higher-order shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This paper focuses on trigonometric porosity distribution to analyze its effect on the free vibration frequencies of porous orthotropic multi-layered composite plates. Three types of porosity distributions are considered. The governing equations of the free vibration response of porous orthotropic multi-layered composite plates are derived from the Hamilton's principle using higher-order shear deformation theory. The free vibration frequency relation of the problem is obtained by performing Galerkin's method. After the validation process of the relation under the available literature, a few parametric analyses are performed to observe the influence of shear deformation, porosity distribution, orthotropy, layer sequence, and different geometric properties on the frequencies.

Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions (다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석)

  • 임정식;손동성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

Free Vibration Analysis of Stepped Parabolic Arches with Timoshenko's Theory (Timoshenko 이론에 의한 불연속 변단면 포물선 아치의 자유진동 해석)

  • 오상진;진태기;모정만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.942-947
    • /
    • 2004
  • The differential equations governing free, in-plane vibrations of stepped non-circuiar arches are derived as nondimensional forms including the effects of rotatory inertia, shear deformation and axial deformation. The governing equations are solved numerically to obtain frequencies and mode shapes. The lowest four natural frequencies and mode shapes are calculated for the stepped parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of arch rise to span length ratios, slenderness ratios, section ratios, and discontinuous sector ratios are considered. The effect of rotatory inertia and shear deformation on natural frequencies is reported. Typical mode shapes of vibrating arches are also presented.

  • PDF

Free Vibration Cantilevered Composite Rectangular Plates with Point Supports (점지지된 복합재료 외팔 사각판의 자유진동)

  • 이영신;최명환;류충현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.414-419
    • /
    • 1997
  • The free vibration analysis of cantilever CFRP and GFRP composite rectangular plates with point supports at the free edge and interior position is performed. The natural frequencies and mode shapes of plates are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out and the non-dimensional frequency parameters are compared with FE analysis results. The effects of the number and location of the point support on the frequencies are examined. In the experimental results, it is found that a significant increase in frequencies occurs when the point supports are added on certain parts of plates.

  • PDF

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Mohammad Gholami;Mojtaba Gorji Azandariani;Ahmed Najat Ahmed;Hamid Abdolmaleki
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.