• 제목/요약/키워드: free piston engine linear power system

검색결과 10건 처리시간 0.019초

양방향 스털링엔진의 선형발전기 설계에 관한 연구 (A Study on Design of the Linear Generator in the Double Acting Stirling Engine)

  • 박성제;고준석;홍용주;김효봉;염한길;인세환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

양방향 스털링엔진/발전기의 효율 특성 연구 (A Study on Generating efficiency of the Double Acting Stirling Engine/Generator)

  • 박성제;고준석;홍용주;김효봉;염한길;인세환
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.114-120
    • /
    • 2016
  • This paper describes generating efficiency characteristics of the double acting Stirling engine/generator for domestic small-scale CHP (Combined Heat and Power) system. In small distributed generation applications, Stirling engine has competition from fuel cell, microturbine and etc. In order to be economical in the applications, a long life with minimum maintenance is generally required. Free piston Stirling engine (FPSE) has no crank and rotating parts to generate lateral forces and require lubrication. Double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric displacement and are connected with moving magnet type linear generators for power generation from PV work. In experiments, 1 kW class double acting free piston Stirling engine/generator is fabricated and tested. Heat is supplied to hot end of engine by the combustion of natural gas and converted to electric power by linear generators which are assembled with power pistons. The electric parameters such as voltage, current and phase are measured with for variable flow rate of fuel gas. Especially, generating efficiency of FPSE is measured with three different measurement methods. Generating efficiency of the double acting Stirling engine/alternator is about 24%.

프리피스톤 리니어 동력시스템의 루프소기성능 향상을 위한 유동해석 (A Flow Analysis for Improvement of the Loop Scavenging Performance of a Free Piston Linear Power System)

  • 윤재성;조형욱;이종태;이용균
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.139-144
    • /
    • 2008
  • The focus of this research is that the scavenging aspect of in-cylinder is visualized by the PIV method and its characteristic is analyzed so that the scavenging performance of the free piston hydrogen fueled engine can improve with loop scavenging. As the results, the piston of convex type shows the best scavenging performance among the presented pistons. In case of the abnormal expansion, the scavenging of area between cylinder head and cylinder wall doesn't operate well.

프리피스톤 수소기관의 연소안정화 및 성능향상에 관한 연구 (A Study on the Combustion Stabilization and Performance Improvement in the Free-piston Hydrogen Fueled Engine)

  • 노기철;윤재성;김강문;박상욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.227-233
    • /
    • 2006
  • A free-piston hydrogen fueled engine is considered as one of the next power systems which is able to obtain high efficiency and low emission, simultaneously. In this study, in order to ensure the possibility as the next generation power system, the combustion characteristics and the performance of the free-piston hydrogen fueled engine are analyzed by using the linear RICEM for the change of injection pressure and equivalence ratio. As the results, in-cylinder maximum pressure is shown at injection pressure $P_{inj}$=6bar. Backfire phenomenon is not observed under experimental condition and knock occurs over ${\Phi}=0.8$. The thermal efficiency is the highest at injection pressure, $P_{inj}$=6bar and equivalence ratio, ${\Phi}=0.7$, respectively.

자유 피스톤 스털링엔진/발전기의 설계 인자 연구 (A Study on the Design of the Free-Piston Stirling Engine/Alternator)

  • 박성제;홍용주;고준석;김효봉;염한길;인세환;강인수;이청수
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.

Design and analysis of a free-piston stirling engine for space nuclear power reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.637-646
    • /
    • 2021
  • The free-piston Stirling engine (FPSE) has been widely used in aerospace owing to its advantages of high efficiency, high reliability, and self-starting ability. In this paper, a 20-kW FPSE is proposed by analyzing the requirements of space nuclear power reactor. A code was developed based on an improved simple analysis method to evaluate the performance of the proposed FPSE. The code is benchmarked with experimental data, and the maximum relative error of the output power is 17.1%. Numerical results show that the output power is 21 kW, which satisfies the design requirements. The results show that: a) reducing the pressure shell's thickness can improve the output power significantly; b) the system efficiency increases with the wire porosity, while the growth of system efficiency decreases when the porosity is higher than 80%, and system efficiency exhibits a linear relationship with the temperatures of the cold and hot sides; c) the system efficiency increases with the compression ratio; the compression ratio increases by 16.7% while the system efficiency increases by 42%. This study can provide valuable theoretical support for the design and analysis of FPSEs for space nuclear power reactors.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

프리피스톤 스털링 엔진의 동역학 모델 예측을 통한 비선형 부하 감쇠 특성에 관한 고찰 (Identification of Damping Characteristics of Free-piston Stirling Engines via Nonlinear Dynamic Model Predictions)

  • 심규호;김동준
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.248-257
    • /
    • 2016
  • Recently, researches on the free-piston Stirling engines(FPSEs) are actively investigated. FPSEs have merits in its light weight, simple structure, and little need for maintenance, thus becoming a promising solution for the power conversion of renewable energy and waste heat recycle. This paper presents the methodology that estimates damping coefficients using analytical models of linear and nonlinear dynamics for FPSEs, and validates the methodology by comparing with existing experimental results. The analysis model predicts an operable range of linear damping coefficients forming limit cycles by using the root locus, and time responses obtained by numerical integration determines nonlinear damping coefficients. The model predictions are compared with experimental results of the well-known FPSE B-10B. We also investigate the damping characteristics regarding heater temperatures and power piston motions.

리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석 (Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System)

  • 이제홍;김강문;정대용;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

자유 피스톤 엔진용 단상 선형 발전시스템을 위한 전력제어시스템 (Power Conditioning System for Single Phase Linear Generation System of Free Piston Engine)

  • 곽봉우;김종훈;김명복
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.431-432
    • /
    • 2017
  • 본 논문은 자유 피스톤 엔진에 적용되는 단상 선형발전기용 전력제어시스템에 관한 연구이다. 자유 피스톤 엔진 선형발전시스템은 피스톤의 움직임을 구속하는 기구가 없기 때문에 기계적 마찰 손실이 적고 상사점 도달 시간이 짧아 에너지 효율측면에서 기존의 피스톤 엔진보다 유리한 기술이다. 하지만, 자유 피스톤 엔진의 경우 초기 기동 할 수 있는 동력원이 필요하며, 단상 선형 발전기의 경우 짧은 스트로크 및 낮은 속도로 인해 인덕턴스가 크게 설계 되어, 높은 인덕턴스로 인한 전류의 위상 지연으로 역률이 낮아지게 되고, 응답성이 떨어지는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 역률 보상 및 응답성을 높일 수 있는 자유피스톤 엔진용 단상선형발진기용 전력제어시스템을 제안한다.

  • PDF