• Title/Summary/Keyword: free boundary problem

Search Result 323, Processing Time 0.024 seconds

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Lee, B.H.;Jung, S.J.;Kim, Y.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Park, J.C.;Lee, B.H.;Jung, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.258-263
    • /
    • 2007
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

  • PDF

Numerical Analysis of Violent Sloshing Problems by CCUP Method (CCUP 기법을 이용한 2 차원 슬로싱 문제의 수치해석)

  • Yang, Kyung-Kyu;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In the present paper, a numerical method based on the constraint interpolation profile (CIP) method is applied for simulating two-dimensional violent sloshing problems. The free surface boundary value problem is considered as a multiphase problem which includes water and air. A stationary Cartesian grid system is adopted, and an interface capturing method is used to trace the shape of free surface profile. The CIP combined unified procedure (CCUP) scheme is applied for flow solver, and the tangent of hyperbola for interface capturing (THINC) scheme is used for interface capturing. Numerical simulations have been carried out for partially-filled 2D tanks under forced sway and roll motions at various filling depths and frequencies. The computational results are compared with experiments and/or the other numerical results to validate the present numerical method.

Free Vibration Analysis of a Simply-Supported Circular Plate with a Concentric Square Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 정사각형 구멍을 갖는 단순지지 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.967-972
    • /
    • 2008
  • This paper presents the free vibration analysis of a circular plate with a concentric square hole. The present problem deals with the numerical calculation of the natural frequencies and mode shapes of vibration of the structure by means of Independent Coordinate Coupling Method (ICCM). In this study, the boundary condition is the edge of the square hole is free and the outer circular plate is simply supported. Due to the geometric abnormality, this analysis does not permit an exact solution. Since the ICCM employs coordinate systems corresponding to each domain independently, the kinetic and potential energy expressions necessary for the Rayleigh-Ritz method can be easily obtained. Lastly, the kinematic relation is imposed. In this way, the eigenvalue problem can be easily set up. The numerical results show the efficacy of the ICCM and changes in natural frequencies and modes due to the square hole size.

  • PDF

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory

  • Viswanathan, K.K.;Javed, Saira;Aziz, Zainal Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.259-275
    • /
    • 2013
  • Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is analyzed under shear deformation theory with different boundary conditions by applying collocation with spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of three and five-layered conical shells, made up of two different type of materials are considered. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are compared with the available data and new results are presented in terms of tables and graphs.

전단변형을 고려한 곡선보의 미분구적법(DQM) 내평면 진동해석

  • Gang Gi-Jun
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.111-117
    • /
    • 2001
  • The problem of the vibration of arches has become a subject of interest for many investigators due to Its importance in many practical applications. The early investigators into the in-plane vibration of rings were Hoppe $^{1)}$ and Love $^{2)}$ . Love $^{2)}$ improved on Hoppe's theory by allowing for stretching of the ring. Lamb $^{3)}$ investigated the statics of incomplete ring with various boundary conditions and the dynamics of an incomplete free-free ring of small curvature.(omitted)

  • PDF

Eigenvalue analysis of axisymmetric circular Mindlin plates by pseudospectral method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.44-49
    • /
    • 2002
  • A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics research community. Clamped, simply supported and flee boundary conditions are considered, and numerical results are presented for various thickness-to-radius ratios.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF