• Title/Summary/Keyword: frame construction

Search Result 1,063, Processing Time 0.025 seconds

In-Situ Behaviors of Steel Frame-type Retaining Walls (조립식 강재틀 옹벽의 현장적응성 분석)

  • 박종배;임해식;박용부;나승민;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.93-101
    • /
    • 2003
  • Steel frame-type retaining walls(SFRW) are constructed by on site bolting of prefabricated steel frames and internal filling of materials such as rocks with the size of 150-300mm. Easy & fast construction, superior drainage performance and structural performance to rigorous site conditions are some of the merits of applying the SFRW to various construction sites. After the development of the structural details, a test construction of SFRW, with the height of 6m and 30m in length, was carried out at an apartment site. After completion, several months of monitoring was carried out on the structure to check displacement, tilting, settlement, soil pressures and drainage characteristics. The results of the structural behavior of SFRW along with its construction methods are presented in the paper.

  • PDF

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

A basic study of steel-joint connection method of composite precast concrete members (합성 PC부재의 Steel-joint Connection Method 개발 기초연구)

  • Kim, Geun-Ho;Lee, Dong-Hoon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF

Development Process of Monocoque Frame for Hybrid Bicycle using Bolt Fastening (볼트체결을 이용한 하이브리드 자전거 모노코크 프레임 개발 프로세스)

  • Lee, In-Chul;Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.93-100
    • /
    • 2013
  • This paper presents the development process for a bicycle monocoque frame using bolt fastening. Traditionally, bicycle frames have been constructed with metal tubes joined at their ends by welding. These frames have been brazed or soldered onto metal lugs, forming the frame. Because stress loads become greatest at the joint of the bicycle tube frame, joint construction strongly influences frame design and construction. To avoid the inherent problems of material discontinuity at frame joints, numerous designers have attempted to reduce or eliminate the number of joints in tube frames. Nevertheless, the manufacture of high quality, reliable, one-piece and jointless frames has proven difficult and expensive. In this study, a new monocoque frame adapted to a hybrid bike is proposed. The advantage of the monocoque frame, is theat is has a rechargeable battery system that is built into the frame; as a result, the emotional quality for the customer is improved. In order to estimate the design compatibility compared with that of tube frames, structural analysis is performed using finite element method. A prototype based on a modified design has also been made and stability testing has been carried out.

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

Economic Analysis of Connection and Anchorage Methods of Bottom Rebar for Composite Precast Concrete Girder (합성 PC 보의 하부철근 이음 및 정착방법에 따른 경제성 검토)

  • Cho, Wonhyun;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.11-12
    • /
    • 2015
  • Green Frame is a Rahmen structure made of composite precast concrete members. According to the concrete design code, a lower rebar of precast concrete girder, should be extended to the inner precast concrete column. However, such extension of lower rebar may sharply reduce its constructability. To satisfy the criteria, the connection and anchorage of beam rebar should be taken into consideration, yet it is difficult to use lapping as it is not easy to ensure enough space when Green Frame method is adopted. To solve this, a new method of lower rebar connection and anchorage was developed, and this study is intended to review economic feasibility prior to applying the method developed onto sites. The study result can be used as basic data for selection of the optimal joint and anchorage method for lower rebar of the green frame construction.

  • PDF

Analysis of the Usability Effect of the Open Section Near the Tower Crane Installed on the Steel Frame (철골좌대에 설치되는 타워크레인의 주변 오픈 구간에 의한 사용성 영향 분석)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.184-185
    • /
    • 2020
  • In Top-down sites, there are many open sections around the tower crane installed on the steel frame. The open section near the tower crane may cause slab cracks and deformation of the steel frame members installed in the open section due to earth pressure. Therefore, in the field, additional consideration during construction of the open section near the tower crane should be considered.

  • PDF

The use of topology optimization in the design of truss and frame bridge girders

  • Kutylowski, Ryszard;Rasiak, Bartosz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.67-88
    • /
    • 2014
  • It is shown that topology optimization is a valuable tool for the design of bridge girders. This paper is a follow-up to (Kuty${\l}$owski and Rasiak 2014) and it includes an analysis of truss members' outer dimensions dictated by the standards. Moreover, a frame bridge girder mapped from a selected topology is compared with a typical frame girder on the basis of (Kuty${\l}$owski and Rasiak 2014). The analysis shows that topology optimization by means of the proposed algorithm yields a topology from which one can map a frame bridge girder requiring less material for its construction than the typical frame girder currently used in bridge construction.

An Experimental Study on Resisting Force of Scaffolding Frames using Buckled Pipe

  • Na, Young-Chan;Son, Ki-Sang
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • There are many structural problems when the scaffolding frame is applied to a construction site contractor may use a used pipe or buckled pipe which they lended them from commercial firms without any inspection of those materials even though they have been used and exposed to weather for a long times. Therefore, they should be checked of their current capacity, comparing with the original one so that construction contractor can apply their capacity to a temporary frame depending on the site situation against collapsion of those. This study is mainly focused on the behavior of a scaffolding frame using prebuckled pipes. Additionally, standard frame with bracing and without bracing case are also tested for comparing with the prebuckled case. Prebuckled case has its capacity less approximately 20 % than the standard frame.