• Title/Summary/Keyword: fracture morphology

Search Result 173, Processing Time 0.029 seconds

Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection- (강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

Effects of Mixing Mode on the Fracture Properties of Silica and Carbon Black Filled NR Vulcanizates (실리카 및 카본블랙이 충전된 천연고무 가황물에서 배합방법이 파열특성에 미치는 영향)

  • 박성수;박병호;송기찬;김수경
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.220-227
    • /
    • 2000
  • Silica and carbon black filled natural rubber (NR) vulcanizates were prepared with different mixing modes and amounts of fillers. Curing characteristics, morphology. and tear properties of the NR vulcanizates were investigated. The NR vulcanizates filled with silica and carbon black sequentially showed longer induction time ($t_2$), cure index ($t_{90}$ ), and lower maximum torque ($T_{max}$ ) than the NR vulcanizates filled with them simultaneously, during curing process. The former showed superior dispersion of fillers and tear properties to the latter. The NR vulcanizates containing 30 phr of silica showed excellent properties in the experimental range.

  • PDF

CONDYLAR ANKYLOSIS : UNILATERAL POSTTRAUMATIC CONDYLAR PSEUDOANKYLOSIS (악관절 과두강직 : 편측성 과두강직을 동반한 안모비대칭 치료 증례)

  • Hong, Sung-Gyu;Hong, Sung-Joon
    • The korean journal of orthodontics
    • /
    • v.23 no.3 s.42
    • /
    • pp.427-445
    • /
    • 1993
  • The ankylosis of temporomandibular joint occured by several causes directly developes TM joint disfunction, In cases with prolonged condylar ankylosis, especially at growing age the condylar ankylosis evokes malfunction of growth center area, and then developes the abnormal facial morphology and malocclusion. Therefore it must be cured. Almost authors have agreed to the necessity of surgical correction of the TMJ anylosis. but they did not decide the one surgical method to get the best result. The Tx. method suggested by many authors are the using interposition after resection of condyle to remain a lever of 3rd class in Mn. kinetics, the autogenous condylar graft and the alloplastic condylar graft. Some authors have got the satisfied results only with the condylectomy of the involved TMJ. This study also operated only the detachment of fibrous adhesion on ankylosed condylar side and then established occlusion in the case with the unilateral TMJ ankylosis and fibrous joint adhesion and facial asymmetry evoked after the fracture of condylar head at early age. This study got a improved mouth opening and a stable postsurgical result after 1 year. Also, this study reviewed many author's study about the chanracteristics, etiology, diagnosis and Tx. method for the ankylosis of TMJ.

  • PDF

The Study on the Strength and Toughness of Austempered Ductile Cast Iron (오스템퍼 처리(處理)한 구상흑연주철(球狀黑鉛鑄鐵)의 강인화(强靭化)에 관(關)한 연구(硏究)(1))

  • Lee, Young-Kye;Kim, Sug-Won;Kim, Dong-Keon;Lee, Bang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.10 no.2
    • /
    • pp.144-153
    • /
    • 1990
  • Ductile cast iron has good ductility and toughness, for the graphite morphology is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the modification of matrix structure by the heat treatment or the addition of alloying elements. In this study, effects of various special heat treatments (cyclic heat treatment and intermediate heat treatment) and Ni addition on the toughness and strength of the austempered ductile cast iron were studied. The results obtained from this study were as follows : 1. The amount of fine pearlite was increased with the Ni content and the number of cycle in cyclic heat treatment. 2. When the specimens treated and not by special heat treatment at 820 was austempered, in the former the austenite was formed on grain boundary entirely, but in the latter on grain boundary partially. 3. The impact energy was decreased with the Ni content, because the coarisen austenite pools formed with the Ni content was transformed into martensite during quenching. 4. The mechanical properties of austempered ductile cast iron containing 2%Ni treated cyclic heat treatment(5 cycles)was very excellent in handness 99(HRB), impact energy 12(kg-m) maximum fracture load 1500(kg-f).

  • PDF

Micro-cutting of Cemented Carbides with SEM (초경합금재의 전자현미경(SEM)내 마이크로 절삭)

  • 허성중
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.55-62
    • /
    • 2003
  • This paper investigates the micro-cutting of cemented carbides using PCD (polycrystalline diamond) and PCBN (polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was studied, including cutting speed, depth of cut and various tool rake angle. Summary of the results are shown below. (1) Three type of chip formation process have been proposed by the results of the direct observation in orthogonal micro-cutting of cemented carbide materials. (2) From the whole observation of chip formation, primary WC particles are crushed and/or fine grained in the shearing deformation zone. A part of them are observed to collide directly with a cutting edge of tool by following the micro-cutting. (3) Surface finish, surface morphology and surface integrity is good to obtain by cutting with PCD cutting tool compared with PCBN. (4) The machined surface has the best quality near the low cutting speed of 10${\mu}m$/sec with a cutting depth of 10 ${\mu}m$ using 0$^\circ$ rake angle and 3$^\circ$ flank angle in this condition, but it was found that excessively low speed, for example the extent of 1 ${\mu}m$/sec, is not good enough to select for various reason.

The effect of welding parameters on the formation of discontinuities in the laser fusion zone between Fe-Co-W sintered segment and mild steel (Fe-Co-W 소결체와 탄소강의 레이저 용융부 결함형성에 미치는 공정변수의 영향)

  • Kim S. W.;Yoon B. H.;Jung W. G.;Lee C. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.25-36
    • /
    • 2004
  • This study was performed to clarification of the formation of weld discontinuities in the dissimilar laser fusion zone. Welding parameters were beam power of 1300, 1430, 1560, and 1700 W and travel speed of 1, 1.3, and 1.7 m/min. Most cavities in the fusion zone were observed near the tip. Cavities in the fusion zone observed to be formed and grown from pores in the tip. More cavities were formed as the beam position moves to the tip side. Small cavities were decreased but large cavities were increased when the energy input increased. W content in the fusion zone was increased with heat input and as the beam position close to the tip. In the fusion zone, W content in the dendrite boundary was increased with heat input. Considering the propagation path and fracture morphology, cracks were solidification cracking, and were initiated and propagated along the dendrite boundaries. The formation of cracks might be related with the W rich ${\mu}$ phase which was formed in the grain boundaries and dendrite boundaries.

  • PDF

A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique (아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교)

  • 윤석영;이윤복;김광호
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

Manufacture and Surface Structure Characteristics of Mn-Doped (K, Na)NbO3 Films

  • Kim, Yeon Jung;Byun, Jaeduk;Hyun, June Won
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • KNN is widely used in the electronic industry such as memory devices, sensors, and capacitors due to various structural, electrical, and eco-friendly properties. In this study, Mn-doped KNN was prepared by adopting a sol-gel method with advantages of low cost and large area thin film fabrication. The Mn-doped KNN thin films were deposited by annealing in air for 1 hour and 700℃. The surface morphology characteristics and grain size of the heat-treated KNN were observed by SEM and AFM, and we used the X-ray diffraction for measuring the crystal phase of KNN. The XRD analysis results show that the fabrication of (K0.5Na0.5)(Nb1-xMnn)O3 thin films by sol-gel method in the thin film process of this experiment was stable in the perovskite phase of c-axis orientation. The SEM and AFM results show that the cracks were not confirmed from the fracture surface data of KNN thin films and were densely deposited with thin films with uniform thickness.