A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique

아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교

  • 윤석영 (부산대학교 공과대학 재료공학부) ;
  • 이윤복 (부산대학교 공과대학 재료공학부) ;
  • 김광호 (부산대학교 공과대학 재료공학부)
  • Published : 2002.08.01

Abstract

TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

Keywords

References

  1. S. Boelens, H. Veltrop, Surf. Coat. Technol. 33 (1987) 63 https://doi.org/10.1016/0257-8972(87)90177-0
  2. W. D. Munz, J. Vac. Sci. Technol. A4 (6) (1986) 2717
  3. G. H. Kang, H. Uchida, E. S. Koh, Surf. Coat. Technol. 86/87 (1996) 421 https://doi.org/10.1016/S0257-8972(96)02980-5
  4. H. Ljungcrantz, L. Hultman, J. E. Sundgren, Surf. Coat. Technol. 63 (1994) 123 https://doi.org/10.1016/S0257-8972(05)80016-7
  5. A. W. Baouchi, A. J. Perry, Surf. Coat. Technol. 49 (1991) 253 https://doi.org/10.1016/0257-8972(91)90064-4
  6. J. Kourtev, R. Pascova, E. Weibmantel, Thin Solid Films 287 (1996) 202 https://doi.org/10.1016/S0040-6090(96)08751-2
  7. P. J. Martin, R. P. Netterfield, T. T. Kinder, Surf. Coat. Technol. 49 (1991) 239 https://doi.org/10.1016/0257-8972(91)90062-2
  8. A. N. Panckow, J. Steffenhagen, B. Wegner, L. Dubner, F. Lierath, Surf. Coat. Technol. 138 (2001) 71 https://doi.org/10.1016/S0257-8972(00)01150-6
  9. M. I. Jones, I. R. McColl, D. M. Grant, Surf. Coat. Technol. 132 (2000) 143 https://doi.org/10.1016/S0257-8972(00)00867-7
  10. M. Pinkas, J. Pelleg, M. P. Dariel, Thin Solid Films 355-356 (1999) 380 https://doi.org/10.1016/S0040-6090(99)00667-7
  11. U. C. Oh, J. H. Je, J. Appl. Phys. 3 (l) (1993) 1692
  12. K. H. Kim, S. H. Lee, Thin Solid Films 283 (1996) 165 https://doi.org/10.1016/0040-6090(96)08766-4
  13. W. Heinke, A. Leyland, A. Mattews, G. Berg, C. Friedrich, E. Broszeit, Tests, Thin Solid Films 270 (1995) 431-438 https://doi.org/10.1016/0040-6090(95)06934-8
  14. J. H. Hsieh, C. Liang, C. H. Yu, W. Wu, Surf. Coat. Technol. 108-109 (1998) 132 https://doi.org/10.1016/S0257-8972(98)00684-7
  15. M. V. Stappen, L. M. Stals, M. Kerkhofs, C. Quaeyhaegens, Surf. Coat. Technol. 74-75 (1995) 629 https://doi.org/10.1016/0257-8972(95)08296-4
  16. S. Wilson, A. T. Alpas, Tribo-layer Formation during Sliding Wear of TiN Coatings, Wear 245 (2000) 223-229 https://doi.org/10.1016/S0043-1648(00)00482-8
  17. K. N. Andersen, E. J. Bienk, K. O. Schweitz, H. Reitz, J. Chevallier, P. Kringhoj, J. Bottiger, Surf. Coat. Technol. 123 (2000) 219 https://doi.org/10.1016/S0257-8972(99)00473-9