• 제목/요약/키워드: fractional flow approach

검색결과 16건 처리시간 0.022초

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

압축성을 고려한 분율 흐름 접근 방식에 근거한 삼상흐름모델 개발 (Development of Compressible Three Phases Flow Simulator Based on Fractional Flow Approach)

  • 석희준;고경석
    • 자원환경지질
    • /
    • 제41권6호
    • /
    • pp.731-746
    • /
    • 2008
  • 대부분의 분을 흐름 접근 방식을 따르는 다상흐름모델들은 주로 유체나 매질의 비 압축성을 가정하거나 완전한 삼상 오염물을 다루지 않고 이상 유체 (물 또는 공기, 물 또는 불용융성유체)의 거동만을 다룬다. 그러나 본 연구에서는 유체 및 매질의 압축성과 완전한 삼상 오염물을 가정하는, 분율흐름접근방식을 따르는 수학적 지배방정식을 개발하고, 이를 토대로 압축성 유체 및 매질을 고려한 삼상흐름 수치모의프로그램을 개발하였다 개발된 삼상흐름 수치모의프로그램 (Compressible Multiphase Flow Simulator, CMPS)을 검증하기 위해서 기존에 개발된 비압축성 유체 및 매질을 고려한 삼상흐름수치모의 프로그램인 MPS (Suk and Yeh, 2007; Suk and Yeh, 2008) 및 해석해를 통해서 간접적으로 비교 검증하였다. 비교결과 CMPS와 MPS의 결과와 해석해들은 서로 잘 일치하였다. 따라서 CMPS는 압축성 유체 및 매질을 고려한 삼상흐름 수치모의를 구현 할 수 있는 가능성을 가진다.

친수성에 의존하는 소수성 액체의 거동을 위한 분율 유동 접근 방식을 이용한 다상 유동 수치 모델링 개발 (Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration)

  • 석희준;여인욱;이강근
    • 자원환경지질
    • /
    • 제44권2호
    • /
    • pp.161-170
    • /
    • 2011
  • 석유공학분야에서 보고된 분율 흐름 접근 방식을 이용하여 물리적 또는 화학적으로 불균질한 매질에서 완전한 삼상유체를 고려할 수 있는 다상 흐름 수치 모의 프로그램인 CHMPS가 개발되었다. 이 프로그램은 석희준과 G.T. Yeh (2008)에 의해 개발된 MPS을 확장하였는데, 친수성이 NAPL 거동에 미치는 영향을 모의하기 위하여 개발되었다. 대부분 존재하는 모델들은 물리적으로 불균질한 매질을 고려하고 이상흐름과 특정한 경계조건에 국한되어 있다. 게다가 대부분의 모델들은 주로 water-wet 매질에만 국한되어 있다. 그러나 실제 존재하는 시스템에서는 water-wet과 oil-wet 매질 사이의 친수성의 변화는 종종 일어난다 더군다나 기름에 의한 다공성 매질의 젖음은 균등하기 보다는 불균질 또는 부분적일 수 있다. 왜냐하면 친수성에 영향을 미치는 요소들과 지하 매질이 불균질하기 때문이다. 따라서, 이번 연구에서는 물리적으로 불균질한 매질 뿐만 아니라 친수성 변에서 화학적으로 불균질한 매질을 CHEMPS을 활용하여 수치모의 하였다. 그 외에도 개개의 상에 대해서 유량 경계조건 및 고정경계조건의 두 가지 형식의 결합으로 표현되는 일반경계조건이 고려되었다.

평면급확장유동내 대칭유동분기현상의 특성에 관한 연구 (Characteristics of Bifurcation Phenomena of Symmetric Flow Pattern in a Plane Sudden-Expansion Flow)

  • 조진호;이문주;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.33-38
    • /
    • 2001
  • Bifurcation of unstable symmetric flow patterns to stable asymmetric ones in laminar sudden-expansion flow has been numerically investigated. Computations were carried out for an expansion ratio of 3 and over a range of the flow Reynolds numbers by using numerical methods of second-order time accuracy and a fractional-step method that guarantees divergence-free flowfields at all times. The critical Reynolds number above which bifurcation of pitchfork type to asymmetric flow pattern takes place is lower in a flow with a higher expansion ratio, in agreement with the previously reported results. The bifurcation diagrams show that the bifurcation takes place at a Reynolds number, $Re_c = 86.3$, higher than the value that has been reported. The lower critical Reynolds number may be due to deficiencies in their computations which employed SIMPLE-type relaxation methods rather than the initial-value approach of the present study. Characteristics of the flow development during the transition to asymmetric stable flow have been investigated by using spectral analysis of the velocity signals obtained by the simulations.

  • PDF

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

원관내 Bingham Plastic의 층류 대류 열전달(2) 수치해석적 연구-속도분포 발달유동과 속도 및 온도분포 동시 발달유동 (Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe(II) Numerical approach-hydrodynamically develrping flow and simultaneously developing flow)

  • 민태기;최형권;최해천;유정열
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4003-4012
    • /
    • 1996
  • Hydro dynamically developing and simultaneously (hydro dynamically and thermally) developing laminar flows of a Bingham plastic in a circular pipe have been investigated numerically. Solutions have been obtained by using a four-step fractional method combined with an equal order bilinear finite element method. For the hydro dynamically developing flow, shorter entrance length is required to reach fully developed velocity field for larger yield stress and non-monotonic pressure drop along the pipe centerline is observed when the yield stress exceeds a certain critical value. For the simultaneously developing flow, the heat transfer characteristics show the same trends as those predicted for the thermally developing flow (Graetz problem).

삼차원 마이크로 채널 내 카오스 혼합 (CHAOTIC MIXING IN THREE-DIMENSIONAL MICRO CHANNEL)

  • 레뛰홍반;강상모;서용권;왕양양
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.49-55
    • /
    • 2007
  • The quality of chaotic mixing in three-dimensional micro channel flow has been numerically studied using Fractional-step method (FSM) and particle tracking techniques such as $Poincar{\acute{e}}$ section and Lyapunov exponents. The flow was driven by pressure distribution and the chaotic mixing was generated by applying alternating current to electrodes embedded on the bottom wall at a first half period and on the top wall at a second half period. The equations governing the velocity and concentration distributions were solved using FSM based on Finite Volume approach. Results showed that the mixing quality depended significantly on the modulation period. The modulation period for the best mixing performance was determined based on the mixing index for various initial conditions of concentration distribution. The optimal values of modulation period obtained by the particle tracking techniques were compared with those from the solution of concentration distribution equation using FSM and CFX software and the comparison showed their good match.

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

자유표면 환경유동에 대한 비정수압 효과 (Effects of Non-hydrostatic Pressure on Free Surface Environmental Flows)

  • 윤범상;박철우
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제8권3호
    • /
    • pp.116-121
    • /
    • 2005
  • 본 연구에서는 자유표면을 갖는 대규모의 환경유동의 해를 구하는데 있어 비정수압의 효과를 고려하는 새로운 계산 기법을 제시하였다. Sigma 좌표계에서 시간은 전진차분으로, 공간은 중간차분 및 풍상차분을 혼합하여 2단계 해법을 도입하였다. 계산기법의 타당성과 유효성을 검증하기 위하여, 자유표면을 갖는 정상유동과 비정상유동에 대한 전형적인 예를 설정하여 정수압 계산과 비정수압 계산을 수행하고 이들을 비교하였다. 계산결과 복잡한 해저지형을 갖는 자유표면 유동에 있어, 지정수압효과가 무시할 수 없는 유동영역이 존재함이 입증되었으며, MAC기법과 같은 3차원 유체동역학적 기법을 적용하기에는 비경제적인 문제에 대해 본 계산기법이 매우 유효하게 적용될 수 있다는 가능성이 입증되었다.

  • PDF