• 제목/요약/키워드: fractional Euler's method

검색결과 4건 처리시간 0.015초

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • Odibat, Zaid M.;Momani, Shaher
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.15-27
    • /
    • 2008
  • We present and discuss an algorithm for the numerical solution of initial value problems of the form $D_*^\alpha$y(t) = f(t, y(t)), y(0) = y0, where $D_*^\alpha$y is the derivative of y of order $\alpha$ in the sense of Caputo and 0<${\alpha}{\leq}1$. The algorithm is based on the fractional Euler's method which can be seen as a generalization of the classical Euler's method. Numerical examples are given and the results show that the present algorithm is very effective and convenient.

  • PDF

Fractional order optimal control for biological model

  • Mohamed Amine Khadimallah;Shabbir Ahmad;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제34권1호
    • /
    • pp.63-77
    • /
    • 2024
  • In this research, we considered fractional order optimal control models for cancer, HIV treatment and glucose.These models are based on fractional order differential equations that describe the dynamics underlying the disease.It is formulated in term of left and right Caputo fractional derivative. Pontryagin's Maximum Principle is used as a necessary condition to find the optimal curve for the respective controls over fixed time period. The formulated problems are numerically solved using forward backward sweep method with generalized Euler scheme.

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI;EIHAB BASHIER;NUR NADIAH ABD HAMID;NORSHAFIRA RAMLI
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.695-708
    • /
    • 2024
  • In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

3차원 부유체의 유체-물체 연성해석 (FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS)

  • 고광수;안형택
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.