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AN ALGORITHM FOR THE NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

ZAID M. ODIBAT* AND SHAHER MOMANI

ABsTRACT. We present and discuss an algorithm for the numerical solution
of initial value problems of the form D2y(t) = f(t, y(t)), y(0) = yo, where
D¢y is the derivative of y of order « in the sense of Caputo and 0 < a < 1.
The algorithm is based on the fractional Euler’s method which can be seen
as a generalization of the classical Euler's method. Numerical examples
are given and the results show that the present algorithm is very effective
and convenient.
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1. Introduction

In this paper we introduce an algorithm for the numerical solution of initial
value problems of the form

Dy(t) = f(t,y(8)), y(0) =9, 0<a<l, (1)

where DZ denotes the Caputo fractional differential operator [1]. The devel-
opment of this algorithm is motivated by a few classical and many recent ap-
plications of fractional differential equations. Among the classical problems we
mention areas like the modelling of the behavior of viscoelastic materials in
mechanics [2]. More recently fractional calculus has been applied to contin-
uum and statistical mechanics for viscoelasticity problems, Brownian motion
and fractional diffusion-wave equations and many physical phenomena [1-12],
Most nonlinear fractional differential equations do not have analytic solu-
tions, so approximations and numerical techniques must be used {13-19]. The
decomposition method [20-28] and the variational iteration method [29-45] are
relatively new approaches to provide an analytical approximate solution to linear
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and nonlinear problems, and they are particulary valuable as tools for scientists
and applied mathematicians, because they provide immediate and visible sym-
bolic terms of analytic solutions, as well as numerical approximate solutions
to both linear and nonlinear differential equations. The application of the two
methods is successfully extended to obtain an analytical approximate solutions
to linear and nonlinear differential equations of fractional order [24-28,32,45-47].
A comparison between the variational iteration method and Adomian decompo-
sition method for solving fractional differential equations is given in {46,47]. The
fact that the variational iteration method solves nonlinear equations without
using Adomian polynomials can be considered as an advantage of this method
over Adomian decomposition method.

A few numerical methods for fractional differential equations have been pre-
sented in the literature {13-19]. However many of these methods are used for
very specific types of differential equations, often just linear equations or even
smaller classes. Recently, Diethelm et al. [19] introduced a method for the nu-
merical solution of the nonlinear fractional differential equation (1) which can
be seen as a generalization of the classical Adams-Bashforth-Moulton scheme for
first order differential equations.

The structure of this paper is as follows. We begin by introducing some
necessary definitions and mathematical preliminaries of the fractional calculus
theory which are required for establishing our results. In sections 3 and 4,
we introduce the modified trapezoidal rule and a new generalization of Taylor’s
formula that involves Caputo derivatives, respectively. In section 5, we derive the
fractional Euler’s method that is a generalization of the classical Euler’s method
for the numerical solution of ordinary differential equations. The algorithm itself
is presented in details in section 6. In section 7, we present three examples to
show the efficiency and the simplicity of the algorithm. Finally, in section 8, we
give the conclusions.

2. Basic definitions

For the concept of fractional derivative we will adopt Caputo’s definition
which is a modification of the Riemann-Liouville definition and has the advantage
of dealing properly with initial value problems in which the initial conditions are
given in terms of the field variables and their integer order which is the case in
most physical processes.

Definition 1. A real function f(z), x > 0, is said to be in the space C,,
i € R if there exists a real number p(> u), such that f(z) = z?fi(z), where
fi(z) € C[0,00), and it is said to be in the space C]* iff fM™ecC, meN.

Definition 2. The Riemann-Liouville fractional integral operator of order o >
0, of a function f € Cy, p 2 —1, is defined as
1 £
Jef(z) = —/ -t 1f(t)dt, a>0, x>0,
) = T ), 0
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Ifz) = f(a).

Properties of the operator J* can be found in [3,4,8], we mention only the
following:

For feCup>-1,0,8>0and vy > —1:

(1) J2JBf(z) = J**Pf(z),  (2) J*JPf(z) = JPJ*f(z),

(8) Joo = —LOHD oy,

Fa+v+1)

The Riemann-Liouville derivative has certain disadvantages when trying to
model real-world phenomena with fractional differential equations. Therefore,
we shall introduce a modified fractional differential operator D% proposed by
M. Caputo in his work on the theory of viscoelasticity [1]. Caputo’s definition,
which is a modification of the Riemann-Liouville definition, has the advantage
of dealing properly with initial value problems in which the initial conditions are
given in terms of the field variables and their integer order which is the case in
most physical processes.

Definition 3. The fractional derivative of f(z) in the Caputo sense is defined
as

D(a) = "D (@) = s [ (o= 0 et

F(m —Q 0
form-l<a<mmeN >0, feCh.

Also, we need here two of its basic properties:
Lemma 1. Ifm—-1<a<m,meNand f € CF, u> ~1, then

D2J%f(z) = f(x), )
JeD? f(z) = }:f“>o+y—q z>0. (3)

3. Modified trapezoidal rule

n this section, we present a review of the modified trapezoidal rule, which
is introduced in [48]. This rule is used to approximate the fractional integral
Je f(t) by a weighted sum of function values at specified points. Suppose that the
interval [0, a] is subdivided into k subintervals [t;,¢;+1] of equal width h = a/k
by using the nodes t; = jh, for j = 0,1,...,k. The modified trapezoidal rule

hef(0) , h%f(a)
T(a+2)  T(a+2) @

T (k=g + ) =2+ (- - ) L

T(f,h,a) = ((k=1)** — (k - o — 1)k%)

is an approximation to the fractional integral

(J*f()(a) = T(f ko) — Er(f,hya), a>0, a>0. (5)
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Furthermore, if f(t) € C?{0,a], there is a constant C, depending only on «
so that the error term Ep(f,h, ) has the form

|Br(f,h, @) < Callf"[leca®h? = O(h?). (6)

It is clear that if & = 1, then the modified trapezoidal rule (4) reduces to the
classical trapezoidal rule. This rule is simple for computational performance for
all values of @ and h. For more details about the rule and its applications, we
refer the reader to [48].

4. Generalized Taylor’s formula

In this section we introduce a new generalization of Taylor’s formula that
involves Caputo fractional derivatives. This generalization is presented in [49).
We begin by introducing the generalized mean value theorem.

Theorem 1. (Generalized mean value theorem) Suppose that f(z) € C0,a)
and D2 f(z) € C(0,a], for 0 < @ < 1. Then we have

f(w)=f(0+)+5é7)(D3f)(£)'w“, NG

with 0 < €& <z, Vz € (0,al.

Proof. From the definitions of the Riemann-Liouville fractional integral operator
and the Caputo fractional derivative operator, we have

(U*DENE) = s [ (e - 0" D20 )
Using the integral mean value theorem, we get
UeDENE) = 5 (PO [ @= 0 = (D) 2%, @)
- T(a)  * 0 T(e) " ’

for 0 < £ < z. On the other hand, from equation (3), we have

(JDL f)(z) = f(z) — f(O+). (10)
So, from (9) and (10), the generalized mean value theorem (7) is obtained. [J

In case of a = 1, the generalized mean value theorem reduces to the classical
mean value theorem. Before we present the generalized Taylor’s formula in the
Caputo sense, we need the following relation.

Theorem 2. Suppose that D?* f(z) , D£"+l)af(x) € C(0,a], for0 < a < 1.
Then we have

(I DI f) @) = (SO f)(e) =

T

T no
m(p* F)(0+), )
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where
D}* =D¢Dg...D¢ (n —times).

Proof. The proof can be obtained using the properties of the Riemann-Liouville

fractional integral operator and the Caputo fractional derivative operator and
the relation:

(D2 )(a) - (I DI f) (@)= g (D) ) - (J*DEHDL*£) (=)
= J"(DYF)0+). O

Theorem 3. (Generalized Taylor’s formula) Suppose that D f(z) € C(0,q]
fork=0,1,... ,n+1, where 0 < a £1. Then we have

T DS H)(E) (s
Zr G PN s (12

with 0 < £ <z, Vz € (0, ql.
Proof. From (11), we have

(D )(a) - (DI @) = 3 =B (D (04,
; ; Tia+1) (13)
that is,
(n+1)a p{n+l)a zt i
f( ) (J +1 D. f) Z I‘ za n 1) (D f)(0+) (14)

Applying the integral mean value theorem to (14) yields

(n+1)e x
(n+1) (n+l)a — (D* f)(é) / —~1 (n+l)adt
(15)
_ DEE) ninge
I'{(n+ Da+1) '
Now, if we Substitute (15) into (14), then the generalized Taylor’s formula
(12) is obtained. O

In case of a = 1, the generalized Taylor’s formula (12) reduces to the classical
Taylor’s formula.

5. Fractional Euler’s method

In this section we shall derive the fractional Euler’s method that we have de-
veloped for the numerical solution of initial value problems with Caputo deriva-
tives. The method is a generalization of the classical Euler's method. Consider
the initial value problem
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Diy() = f(t,y(8), y(0)=y, 0<a<l, t>0. (16)

Let [0, a] be the interval over which we want to find the solution of the problem
(16). In actuality, we will not find a function y(t) that satisfies the initial value
problem (16). Instead, a set of points {(t;,y(t;))} is generated, and the points
are used for our approximation.

For convenience we subdivide the interval [0, a] into k subintervals [t;,t;41] of
equal width h = a/k by using the nodes t; = jh, for j = 0,1,...,k. Assume
that y(t), D2y(t) and D?*y(t) are continuous on [0,a] and use the generalized
Taylor’s formula (12) to expand y(t) about t = to = 0. For each value t there is
a value ¢; so that

o t2a

(D2y(e)en)

(0 = y(to) + (D2Y(E) t0) D

CENN

When (D%y(t))(to) = f(to, y(to)) and h = t; are substituted into equation (17),
the result is an expression for y(t;):

a 2c

h o
Tty F OO et

If the step size h is chosen small enough, then we may neglect the second-order
term (involving h%®) and get

y(t1) = y(to) + f(to, y(to)) (18)

y(tr) = ylto) + %f(to,yuo)). (19)

a+l

The process is repeated and generates a sequence of points that approximates
the solution y(f). The general formula for fractional Euler’s method is

Lip1 =1; + h,
. (20)
y(ti) = y(t) + riomny S 5, 9(85)),
for j =0,1,...,k—1. It is clear that if @ = 1, then the fractional Euler’s method
(20) reduces to the classical Euler’s method.

6. The algorithm

In this section we shall derive the fundamental algorithm for the numerical
solution of the initial value problem (16). The new algorithm is based on the
modified trapezoidal rule and the fractional Euler’s method. Our approach de-
pends on the analytical property that the initial value problem (16) is equivalent
to the integral equation

y(t) = J*f(t,y(®)) + y(0). (21)

Let [0, a] be the interval over which we want to find the approximate the solution.
Suppose that the interval [0, a] is subdivided into & subintervals [t;,t,.1] of equal



An algorithm for the numerical solution of differential equations 21

width h = a/k by using the nodes t; = jh, for j = 0,1,...,k. To obtain the
solution point (1, y(¢1)), we substitute ¢ = ¢; into (21) and we get

y(t1) = (J*f(ty(0)) (1) + y(0). (22)
Now if the modified trapezoidal rule (4) is used to approximate (J f(t, y(t)))(t1)
with step size h = ¢; — 1o, then the result is
h‘af(to’ y(tO)) haf(tla y(tl))
INa+2) I'a+2)

Notice that the formula on the right-hand side of (23) involves the term y(2;).
So, we use an estimate for y(t;). Fractional Euler’s method will suffice for this
purpose. Substituting (19) into (23), yields

y(t) = +4(0). (23)

e he f(t1,y(to) + oy f (to, y(to)))
y(tl)——-ah g((iofgo)) + (t1 y(or(aﬁg? (to, y(to ).

(24)

The process is repeated to generate a sequence of points that approximate the
solution y(t). At each step, the fractional Euler’s method is used as a prediction,
and then the modified trapezoidal rule is used to make a correction to obtain
the finite value. The general formula for our algorithm is :

V) = 5 (0= 0" = G == 5°) ot +400)
g (=40 =2 =0 G- (2

+1‘(cil+ 2)f<tj’y(tj‘1) + wotlrl)f(tj—l,y(tjﬂ)))-

The new algorithm is simple for computational performance for all values of «
and h. It is clear that the behavior of the method is independent of the parameter
« and, as we will see in the next section, the accuracy of the approximation
depends on the step size A.

7. Numerical examples

To give a clear overview of the methodology as a numerical tool, we apply
the proposed algorithm on three different examples of differential equations of
fractional order.

Example 1. Our first example deals with the homogeneous linear equation
Dgy(t) = —y(t), y(0)=1, t>0, (26)

where 0 < o < 1.

The exact solution of equation (26) is given by

y(t) = Ea(_ta), (27)
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where

=) 28
?) ZI‘(ak+1)’ (28)
k=0
is the Mittag-Lefller function of order c.. In view of the algorithm (25), we obtain
the following iteration formula:

&

) = fz"—+5((j 1) = (- - 1)
F(a+2) Z((}"H‘l a+1 (j_i)a+1+(j_i_1)a+1)y(ti) (29)

ne he
a2 ( T+l )y(ti-1).

Table 1. Numerical values for Example 1 when o = 0.5, 0.75 and 1 with h = 0.001.

a=05 a=1075 a=1.0
t U Appro. UEzact U Appro. UEzract U Appro. UEzact

0.0 | 1.000000 1.000000 | 1.000000 1.600000 | 1.000000 1.000000
0.1 0.723955 0.723578 | 0.828254 0.828251 | 0.904837 0.904837
0.2 | 0.644094 0.643788 | 0.732588 0.732585 | 0.818730 0.818731
0.3 1 0.592277 0.592018 | 0.660341 0.660337 | 0.740817 0.740818
0.4 | 0.553831 0.553606 | 0.602124 0.602121 | 0.670319 0.670320
0.5 { 0.523355 0.523157 | 0.553605 0.553603 | 0.606530 0.606531
0.6 | 0.498203 0.498025 | 0.512287 0.512285 | 0.548811 0.548812
0.7 | 0.476864 0.476703 | 0.476556 0.476555 | 0.496585 0.496585
0.8 ] 0.458394 0.458246 | 0.445293 0.445292 | 0.449328 0.449329
0.9 | 0.442157 0.442021 | 0.417683 0.417682 | 0.406569 0.406570
1.0 [ 0.427709 0.427584 | 0.393108 0.393108 | 0.367079 0.367079

First we investigate the effect of allowing the value of a to vary in the interval
(0,1] with fixed step size h = 0.001. The results are given in Table 1. It is clear
that the approximate solutions are in high agreement with the exact solutions
and the solution continuously depends on the time-fractional derivative. The
absolute errors when a = 0.5 and different values of the step size k are given in
Table 2. The results show that the accuracy can be improved if we use much
smaller values of h.

Example 2. Our second example covers the inhomogeneous linear equation

2 1
D%y(t) = 2 — 2 _y(t)+t2 —t, y(0)=0, t>0,

where 0 <a <1



An algorithm for the numerical solution of differential equations

Table 2. Absolute errors for Example 1 when o = 0.5 and with varying step sizes h.

t

h=0.1

h =0.01

h = 0.004

h = 0.0001

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0000e-00
2.7642e-02
6.3532e-02
2.1765e-02
6.6783e-03
1.0867e-02
1.0016e-02
9.8945e-03
9.4682¢-03
9.0545€e-03
8.6295e-03

0.0000e-00
2.5504e-03
2.4222e-03
2.1647e-03
1.9368e-03
1.7463e-03
1.5871e-03
1.4526e-03
1.3377e-03
1.2381e-03
1.1521e-03

0.0000e-00
1.2841e-03
1.1042e-03
9.5509¢-04
8.4009e-04
7.993%-04
6.7599e-04
6.1530e-04
5.6423e-04
5.2061e-04
4.8291e-04

0.0000e-00
4.1574e-05
3.2673e-05
2.7271e-05
2.3510e-05
2.0697e-05
1.8494e-05
1.6713e-05
1.5231e-05
1.3995e-05
1.2932e-05

The exact solution of equation (30) is given by

y(t) =1 —t, (31)

In view of the algorithm (25), we obtain the following iteration formula:

y(t;) = +2) Z( =i+ 1 =9 i)t 4 (G- i - 1))

R S P S
P OR tz)
1 l1—-a .
re- a)tj y(tj-1)
T~ y(ti-1)

pre_ L __p-
Fla+)\I'B—a) ! T(Q2-a)?

e
I‘S? a) -

+I‘(oz-l-2 (Pf’ a)?
+t5 —

The linear equation (30) is solved by Diethelm et al. [19] using the frac-
tional Adams-Bashforth-Moulton method. Tables 3 shows the exact solution
and the approximate solution for equation (30) using the algorithm (25) for
different values of a. The results compare well with those obtained by the
Adams-Bashforth-Moulton method (19].

Example 3. The third example deals with the nonlinear equation

D?y(t) = y(t)2 - y(O) =-2, t>0, (33)

2
(t+1)%’
where 0 < a < 1.
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Table 3. Numerical values for Example 2 when a = 0.5, 0.75 and 1 with A = 0.001.

a=0.>5 a=0.7"75 a=10
t UAppro. UEzact UAppro. UPRxact UAppro. UEzact

0.0 | 0.000000 0.000000 | 0.000000 0.000000 | 0.000000 0.000000
0.1 | -0.089804 -0.090000 | -0.089921 -0.090000 [ -0.089555 -0.090000
0.2 [ -0.159788 -0.160000 | -0.159942 -0.160000 | -0.159590 -0.160000
0.3 | -0.209807 -0.210000 | -0.209954 -0.210000 | -0.209629 -0.210000
0.4 | -0.239842 -0.240000 | -0.239963 -0.240000 | -0.239664 -0.240000
0.5 | -0.249893 -0.250000 | -0.249971 -0.250000 | -0.249696 -0.250000
0.6 | -0.239953 -0.240000 | -0.239977 -0.240000 | -0.239725 -0.240000
0.7 | -0.210019 -0.210000 | -0.209982 -0.210000 | -0.209751 -0.210000
0.8 | -0.160091 -0.160000 | -0.159987 -0.160000 | -0.159775 -0.160000
0.9 | -0.090168 -0.090000 | -0.089991 -0.090000 | -0.089796 -0.090000
1.0 | -0.000249  0.000000 | -0.000005 0.000000 | -0.000184 0.000000

The exact solution of equation (33) in case of =1 is given by

y(t) = “(‘ﬁi‘ﬂ' (34)

In view of the algorithm (25), we obtain the following iteration formula:

u(ts) = 2y (G - D™ - G —a - 1)5%) -2

P (-4 )T =2 - 4+ G- 0 (V) - o) (@9)

2
h™ he 2 2 2
1 Ia¥3) ((y(tf—l) T TatD (y (tj-1) - (tj_1+1)2)) - (tj+1)2)

Table 4 shows the approximate solutions for equation (33) for different values
of « using the algorithm (25). The value of o = 1 is the only case for which
we know the exact solution y(t) = —ﬁ%ﬁ and our approximate solution in this
case is in high agreement with the exact solution. Of course the accuracy can
be improved if we use much smaller values of h.

8. Conclusions

The fundamental goal of this work has been to construct a numerical scheme
for the numerical solution of linear and nonlinear differential equations of frac-
tional order. The goal has been achieved by using the proposed algorithm (25).
This algorithm is based on the modified trapezoidal rule and the fractional
Euler’s method.

There are few important points to make here. First, the algorithm were used
in a direct way without using linearization, perturbation or restrictive assump-
tions. Second, the algorithm is a reliable and very useful one for the numerical
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evaluation of the Mittag-LefHler function and the other functions arising in frac-
tional calculus. Finally, the recent appearance of fractional differential equations
as models in some fields of applied mathematics makes it necessary to investigate
methods of solution for such equations (analytical and numerical) and we hope
that this work is a step in this direction.

1.

2.

11.

12.

Table 4. Numerical values for Example 3 with varying order o and h = 0.001.

t a=02|a=04 | a=06 | a=08 [ a=1.0
0.0 | -2.00000 } -2.00000 | -2.00000 | -2.00000 | -2.00000
0.1 ]-1.57191 | -1.58885 | -1.56451 | -1.73541 | -1.81818
0.2 | -1.48646 | -1.48991 | -1.53362 | -1.59189 | -1.66666
0.3 | -1.42059 | -1.41460 | -1.44369 | -1.48262 | -1.53846
0.4 | -1.36655 | -1.35254 | -1.36994 | -1.39284 | -1.42857
0.5 |-1.32108 | -1.29978 | -1.30711 | -1.31637 | -1.33333
0.6 | -1.28222 | -1.25413 | -1.25246 | -1.24987 | -1.25000
0.7 | -1.24861 | -1.21415 | -1.20427 | -1.19122 | -1.17647
0.8 {-1.21926 | -1.17879 | -1.16136 | -1.13896 | -1.11111
0.9 1-1.19341 | -1.14725 | -1.12283 | -1.09202 | -1.05263
1.0 -1.17049 | -1.11893 | -1.08802 | -1.04957 | -0.99999
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