• 제목/요약/키워드: fourth order theory

검색결과 163건 처리시간 0.018초

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

EXISTENCE OF PERIODIC SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR A FOURTH ORDER NONLINEAR DIFFERENCE SYSTEM

  • LIU, XIA;ZHOU, TAO;SHI, HAIPING
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.491-504
    • /
    • 2018
  • In this article, we consider a fourth order nonlinear difference system. By making use of the critical point theory, we obtain some new existence theorems of at least one periodic solution with minimal period. Our main approach used in this article is the variational technique and the Saddle Point Theorem.

EXISTENCE THEOREMS OF BOUNDARY VALUE PROBLEMS FOR FOURTH ORDER NONLINEAR DISCRETE SYSTEMS

  • YANG, LIANWU
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.399-410
    • /
    • 2019
  • In the manuscript, we concern with the existence of solutions of boundary value problems for fourth order nonlinear discrete systems. Some criteria for the existence of at least one nontrivial solution of the problem are obtained. The proof is mainly based upon the variational method and critical point theory. An example is presented to illustrate the main result.

AT LEAST TWO SOLUTIONS FOR THE SEMILINEAR BIHARMONIC BOUNDARY VALUE PROBLEM

  • Jung, Tacksun;Choiy, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.633-644
    • /
    • 2014
  • We get one theorem that there exists a unique solution for the fourth order semilinear elliptic Dirichlet boundary value problem when the number 0 and the coefficient of the semilinear part belong to the same open interval made by two successive eigenvalues of the fourth order elliptic eigenvalue problem. We prove this result by the contraction mapping principle. We also get another theorem that there exist at least two solutions when there exist n eigenvalues of the fourth order elliptic eigenvalue problem between the coefficient of the semilinear part and the number 0. We prove this result by the critical point theory and the variation of linking method.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

ON A GENERAL CLASS OF OPTIMAL FOURTH-ORDER MULTIPLE-ROOT FINDERS

  • Kim, Young Ik
    • 충청수학회지
    • /
    • 제26권3호
    • /
    • pp.657-669
    • /
    • 2013
  • A general class of two-point optimal fourth-order methods is proposed for locating multiple roots of a nonlinear equation. We investigate convergence analysis and computational properties for the family. Special and simple cases are considered for real-life applications. Numerical experiments strongly verify the convergence behavior and the developed theory.

APPLICATIONS ON FOURTH-ORDER DIFFERENTIAL SUBORDINATION FOR p-VALENT MEROMORPHIC FUNCTIONS

  • Atshan, Waggas Galib;AL-Ameedee, Sarah A.;AL-Maamori, Faez Ali;Altinkaya, Sahsene
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.513-522
    • /
    • 2021
  • In this current study, we aim to give some applications on fourth-order differential subordination for p-valent meromorphic functions in the region U* = {z ∈ ℂ : 0 < |z| < 1} = U∖{0}, where U = {z ∈ ℂ : |z| < 1} , involving the linear operator 𝓛*pf. By making use of basic concepts in theory of the fourth-order, we find new outcomes.

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.