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EXISTENCE OF PERIODIC SOLUTIONS WITH PRESCRIBED

MINIMAL PERIOD FOR A FOURTH ORDER NONLINEAR

DIFFERENCE SYSTEM†
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Abstract. In this article, we consider a fourth order nonlinear difference

system. By making use of the critical point theory, we obtain some new

existence theorems of at least one periodic solution with minimal period.
Our main approach used in this article is the variational technique and the

Saddle Point Theorem.
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1. Introduction

In this article, we are interested in the existence of periodic solutions with
prescribed minimal period for the fourth order nonlinear difference system

∆4un−2 = f(n, un), n ∈ Z, (1.1)

where ∆jun = ∆(∆j−1un) (j = 2, 3, 4), ∆un = un+1 − un, f(s, u) ∈ C1(R2,R),
f(s+T, u) = f(s, u),∀(s, u) ∈ R2. Here, Z denotes the sets of integers, R denotes
the sets of real numbers. Given a ≤ b in Z, let Z[a, b] := Z ∩ [a, b] and T ≥ 3 be
a given integer.

We may regard (1.1) as being a discrete analogue of the following fourth order
differential system

u(4)(s) = f(s, u(s)), s ∈ R, (1.2)

which is used to describe the stationary states of the deflection of an elastic
beam [29]. Equations similar to (1.2) arise in the study of the existence of
solutions to differential equations [6, 9–12,14,15,25,26].
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The study of nonlinear difference equations [1–5, 7, 8, 13, 16–19, 21, 24, 27, 30,
33, 35] is growing up in the last years, not only as a fundamental tool in the
discrete analogue of a differential equation [22, 23, 28, 31, 32, 34], but also as a
useful model for several economical and population problems.

If f(n, un) = 0, Domshlak and Matakaev [7] considered the delay difference
equation

un+1 − un + bnun−k = 0, bn > 0, n ≥ 1. (1.3)

Conditions for the existence and for the non-existence of eventually positive
solution of (1.3) are obtained.

Cabada and Dimitrov [3] devoted to the study of nonlinear singular and non-
singular fourth order difference equations

un+4 +Mun = λgnf (un) + cn, n ∈ {0, 1, · · · , T − 1}

coupled with periodic boundary value conditions. Some existence and nonexis-
tence results are given by using Krasnoselskii’s fixed point theorems in cones.

By using the critical point method, some new criteria are obtained for the
existence and multiplicity of periodic solutions for the following fourth-order
nonlinear functional difference equation [18]

∆2
(
pn−2∆2un−2

)
−∆ (qn−1∆un−1) = f(n, un+1, un, un−1), n ∈ Z.

The proof is based on the linking theorem in combination with variational tech-
nique.

A fourth-order nonlinear difference equation in the form

∆an

(
∆bn (∆cn (∆un)

γ
)
β
)α

+ dnu
λ
n+τ = 0

is considered. Došlá, Krejčová and Marini [8] presented a classification of
nonoscillatory solutions which is based on their asymptotic behaviour and gave
necessary and sufficient conditions for the existence of the so-called minimal and
maximal solutions.

In [22], a class of fourth-order nonlinear difference equation

∆2
(
pn−1∆2un−2

)
−∆ (qn∆un−1) + rnun = f(n, un+1, un, un−1), n ∈ Z,

is studied. By making use of the critical point theory, various sets of sufficient
conditions for the existence of homoclinic solutions are established and some
new results are obtained.

Raafat [21] introduced an explicit formula and discussed the global behavior
of solutions of the fourth order difference equation

un+1 =
aun−3

b− cun−1un−3
, n = 0, 1, 2, · · · ,

where a, b, c are positive real numbers and the initial conditions u3, u2, u1, u0 are
real numbers.

Motivated by the papers [6,11,13], here we deal with the existence of periodic
solution with minimal period for fourth order nonlinear difference system (1.1).
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Our main approach used in this article is the variational technique and the
Saddle Point Theorem.

Throughout this article, let

ω =
2π

T
.

Assume that there is a function F (s, u) with F (s+T, u) = F (s, u), F (−s,−u) =
F (s, u) and

F (s, u) =

∫ u

0

f(s, t)dt,

for any (s, u) ∈ R2. As usual, a solution {un} of (1.1) is said to be periodic of
period T if

uj+T = uj , ∀j ∈ Z.
Our main results are the following theorems.

Theorem 1.1. Assume that the function F (s, u) satisfies the following assump-
tions.
(F1) There exist constants a1 > 0, a2 > 0 and 0 ≤ θ < 1 such that

f(s, u) ≤ a1|u|θ + a2, ∀(s, u) ∈ R2.

(F2) lim
|u|→+∞

∫ u
0
f(s,t)dt

|u|2θ =∞ for s ∈ R.

(F3) There exist three constants σ > 0 and ρ > % > 0 such that(
∂2F (s, u)

∂u2
ς, ς

)
≤ ρς2,∀(s, u, ς) ∈ R3

and (
∂2F (s, u)

∂u2
ς, ς

)
≥ %ς2,∀|u| ≤ σ, (s, u) ∈ R2.

(F4) If β is a rational number, u is a solution of (1.1) with a minimal period
βT , and f(s, u) also has a minimal period βT , then β must be an integer.

(F5) For any integer q > 1 and above two constants ρ and %,

sin4 ωχq
2q

>
ρ

16
, sin4 ω

2q
<

%

16

and
qT∑
n=1

f2(n, 0) <
4πδ2

(
16 sin4 ωχq

2q − ρ
)(

%− 16 sin4 ω
2q

)
ω

,

where χq is a prime number of q.

Then (1.1) admits at least one periodic solution with minimal period qT .

Corollary 1.2. Assume that the function F (s, u) satisfies the assumptions (F1)−
(F4) and

sin4 ω

2
>

ρ

16
, sin4 ω

2q
<

%

16
.
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If
qT∑
n=1

f2(n, 0) <
4πδ2

(
16 sin4 ω

2 − ρ
)
%

ω
.

Then there exists a positive constant C such that for any prime integer q > C,
(1.1) admits at least one periodic solution with minimal period qT .

Theorem 1.3. Assume that the function F (s, u) satisfies the assumptions (F1)−
(F4) and

sin4 ωχq
2q

>
ρ

16
, sin4 ω

2q
<

%

16
.

For any s ∈ R, f(s, 0) = 0. Then (1.1) admits at least one periodic solution
with minimal period qT .

Corollary 1.4. Assume that the function F (s, u) satisfies the assumptions (F1)−
(F4) and

sin4 ω

2
>

ρ

16
, sin4 ω

2q
<

%

16
.

For any s ∈ R, f(s, 0) = 0. Then there exists a positive constant C such that
for any prime integer q > C, (1.1) admits at least one periodic solution with
minimal period qT .

2. Variational framework

To apply the critical point theory, we define the finite dimensional Hilbert
space HqT as

HqT := {u : Z→ R|un+qT = un, ∀n ∈ Z}
and equip it with the inner product

(u, v) :=

qT∑
j=1

ujvj , ∀u, v ∈ HqT ,

and the induced norm

‖u‖ :=

 qT∑
j=1

u2
j

 1
2

, ∀u ∈ HqT ,

where (·, ·) and ‖ · ‖ denote the usual inner product and the usual inner norm in
R.

We define a functional J on HqT by

J(u) :=
1

2

qT∑
n=1

(
∆2un−1

)2 − qT∑
n=1

F (n, un). (2.1)

After a careful computation, by (2.1), we get that

∂J

∂un
= ∆4un−2 − f(n, un), ∀n ∈ Z[1, qT ].
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Therefore, J ′(u) = 0 if and only if

∆4un−2 = f(n, un), ∀n ∈ Z[1, qT ].

Note that {un} ∈ HqT is qT -periodic in n, and f(s, u) is T -periodic in s.
Thus, we reduce the problem of finding a qT -periodic solution of (1.1) to that
of seeking a critical point of the functional J on HqT .

We rewrite J(u) as

J(u) =
1

2

qT∑
n=1

(
∆2un

)2 − qT∑
n=1

F (n, un)

=
1

2
u∗Xu−G(u), (2.2)

where u∗ means the transpose of a vector u, X is the corresponding qT × qT
matrix to the quadratic form

qT∑
n=1

(
∆2un

)2
with un+T = un for n ∈ Z, and G(u) =

qT∑
n=1

F (n, un).

It is easy to see that X is positive semi-definite. Define X0 and X+ by
the eigenspaces associated with the 0 eigenvalue, all positive eigenvalues, re-
spectively. Then HqT = X0 ⊕ X+. Let E+(X) be the sets of all the positive
eigenvalues of X, λ = min {λ|λ ∈ E+(X)}, λ̄ = max {λ|λ ∈ E+(X)}. Thus, by
(2.2),

λ

2
−G(u) ≤ J(u) ≤ λ̄

2
−G(u). (2.3)

Set

E =


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


qT×qT

.

It is obvious that the eigenvalues of E are

λk = 4 sin2 kπ

qT
,∀k ∈ Z[0, qT − 1], (2.4)

0 is an eigenvalue of E and (1, 1, · · · , 1)∗ is eigenvector associated to 0.
Set

λmin = min {λ1, λ2, · · · , λqT−1} ,
and

λmax = max {λ1, λ2, · · · , λqT−1} .
Then by (2.4), λmin = 4 sin2 π

qT and λmax ≤ 4.
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For 1 ≤ i ≤
[
qT−1

2

]
, let

εi =

(
cos

2iπ

qT
, cos

2iπ · 2
qT

, · · · , cos
2iπ · qT
qT

)∗
,

and

εi =

(
sin

2iπ

qT
, sin

2iπ · 2
qT

, · · · , sin 2iπ · qT
qT

)∗
.

where [·] means the greatest-integer function. It is easy to see that εi and εi are
the eigenvectors of E corresponding to the eigenvalues λi.

Define
R = span

{
εi, i ∈ Z

[
1,
[
qT−1

2

]]}
,

and
S = span

{
εi, i ∈ Z

[
1,
[
qT−1

2

]]}
.

We need to consider the following two cases.

On one hand, if qT is even, clearly α = (−1, 1,−1, 1, · · · ,−1, 1)∗ is the
eigenvector corresponding to 4. Taking T = span {α}, we know that HqT =
X0 ⊕ T ⊕R⊕ S. Thus, for any u ∈ HqT ,

un = a+

[ qT−1
2 ]∑
i=1

(
ai cos

ωi

q
n+ bi sin

ωi

q
n

)
,∀n ∈ Z,

where a, ai and bi are constants.
On the other hand, if qT is odd, we know that HqT = X0⊕R⊕S. Therefore,

for any u ∈ HqT ,

un = a+ (−1)nb+

[ qT−1
2 ]∑
i=1

(
ai cos

ωi

q
n+ bi sin

ωi

q
n

)
,∀n ∈ Z,

where a, b, ai and bi are constants.

3. Some basic lemmas

Let D be a real Banach space. Define the symbol Br as the open ball in D
about 0 of radius r, ∂Br as its boundary, and B̄r as its closure.

Lemma 3.1. (Saddle Point Theorem [20]). Let D be a real Banach space, D =
D1⊕D2, where D1 6= {0} and is finite dimensional. Assume that J ∈ C1(D,R)
satisfies the Palais-Smale condition and
(J1) there are constants γ, δ > 0 such that J |∂Bδ∩D1 ≤ γ;
(J2) there is e ∈ Bδ ∩D1 and a constant ϑ ≥ γ such that Je+D2 ≥ ϑ.

Then J has a critical value d ≥ ϑ, where

d = inf
g∈Ω

max
u∈Bδ∩D1

J(g(u)), Ω = {g ∈ C(B̄δ ∩D1, D) | g|∂Bδ∩D1
= I}

and I denotes the identity operator.
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Set

H̄qT = {u ∈ HqT |u−n = un,∀n ∈ Z} .
Therefore, H̄qT = S and

un =

[ qT−1
2 ]∑
i=1

bi sin
ωi

q
n,∀n ∈ Z.

In order to prove Theorem 1.1, we need the following three lemmas.

Lemma 3.2. Assume that the assumptions (F1) and (F2) are satisfied. Then J
satisfies the Palais-Smale condition.

Proof. Let
{
u(i)
}
⊂ HqT be a sequence such that

{
J
(
u(i)
)}

is bounded and

lim
i→∞

J ′
(
u(i)
)

= 0.

Then there exist constants K > 0 and i0 ∈ N, where N denotes the sets of
integers, such that

∣∣J (u(i)
)∣∣ ≤ K and

∣∣J ′ (u(i)
)∣∣ ≤ 1 for i ≥ i0.

Indeed, suppose that
{
u(i)
}

is unbounded. Without loss of generality (other-

wise, choose a subsequence), we suppose that
∥∥u(i)

∥∥ ≥ 1 for i ∈ N and

lim
i→∞

∥∥∥u(i)
∥∥∥ =∞.

Let u(i) = v(i) + w(i) where v(i) ∈ X0 and w(i) ∈ X+. By (F1),

‖∇G(u)‖ =
∥∥(f(1, u1), f(2, u2), · · · , f(qT, uqT ))

∗∥∥
≤

qT∑
i=1

|f(i, ui)|

≤
qT∑
i=1

(
a1|ui|θ + a2

)
≤ qTa1‖u‖θ + aTb2,

where ∇ is defined by the gradient. Combining with J ′
(
u(i)
)

= Xu(i) −
∇G

(
u(i)
)
, we have∥∥∥Xu(i)

∥∥∥ ≤ ∥∥∥J ′ (u(i)
)∥∥∥+

∥∥∥∇G(u(i))
∥∥∥

≤ 1 + qTa1

∥∥∥u(i)
∥∥∥θ + qTa2.

It comes from (2.3) and
∥∥Xu(i)

∥∥ =
∥∥Xw(i)

∥∥ ≥ λ∥∥w(i)
∥∥ that

λ
∥∥∥w(i)

∥∥∥ ≤ 1 + qTa1

∥∥∥u(i)
∥∥∥θ + qTa2

≤ (1 + qTa1 + qTa2)
∥∥∥u(i)

∥∥∥θ .
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That is, ∥∥∥w(i)
∥∥∥ ≤ (1 + qTa1 + qTa2)

∥∥u(i)
∥∥θ

λ
. (3.1)

Therefore, by (3.1),

lim
i→∞

∥∥w(i)
∥∥∥∥u(i)
∥∥ = 0 (3.2)

and

lim
i→∞

∥∥v(i)
∥∥∥∥u(i)
∥∥ = 1. (3.3)

Since

G
(
v(i)
)

=
1

2

(
u(i)
)∗
Xu(i) −

[
G
(
u(i)
)
−G

(
v(i)
)]
− J

(
u(i)
)

=
1

2

(
w(i)

)∗
Xw(i) −

(
∇G

(
v(i) + ξiw

(i)
)
, w(i)

)
− J

(
u(i)
)

≤ λ̄

2

∥∥∥w(i)
∥∥∥2

+

(
qTa1

∥∥∥v(i) + ξiw
(i)
∥∥∥θ + qTa2

)∥∥∥w(i)
∥∥∥+K

≤ λ̄

2

∥∥∥w(i)
∥∥∥2

+

(
qTa1

∥∥∥u(i)
∥∥∥θ + qTa2

)∥∥∥w(i)
∥∥∥+K, (3.4)

where ξi ∈ (0, 1). By (3.2) and (3.4), we have that there exists a constant K1 > 0
such that

G
(
v(i)
)∥∥u(i)

∥∥2θ
≤ K1,∀i ∈ N. (3.5)

If v = {vn} ∈ X0, then
qT∑
n=1

(
∆2vn

)2
= 0.

We have ∆2vn = 0, n ∈ Z[1, qT ]. Thus, v1 = v2 = · · · = vqT . It comes from the
assumption (F2) that

lim
‖v‖→∞

G(v)

‖v‖2θ
= lim
‖v1‖→∞

qT∑
n=1

∫ v1
0 f(n,t)dt

|v1|2θ

(qT )θ
=∞. (3.6)

(3.6) combining with (3.3), we have

lim
i→∞

G
(
v(i)
)∥∥v(i)

∥∥2θ
= lim
i→∞

G
(
v(i)
)∥∥u(i)

∥∥2θ
=∞,

which is a contradiction to (3.5). Therefore, the desired result is obtained. �

Lemma 3.3. If u is a critical point of J(u) on H̄qT , then u is a critical point
of J(u) on HqT .
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According to the proof of Lemma 2.2 in [30], it is easy to prove the Lemma
3.3 and so we omit it.

Let

Γβ = − q

2
(

16 sin4 ωβ
2q − ρ

) qT∑
n=1

f2(n, 0).

Lemma 3.4. Assume that F (s, u) satisfies the assumptions (F4) and (F5). If u
is a critical point of J(u) on H̄qT , and J(u) < Γχq , then u has a minimal period
qT .

Proof. For the contradiction, assume that u has a minimal period qT
β . Due to

(F4), if u is a solution of (1.1) with a minimal period qT
β , then f(s, u) has a

minimal period qT
β . Hence q

β must be an integer. Therefore, β ≥ χq. By the

assumption (F5),

16 sin4 ωβ

2q
≥ 16 sin4 ωχq

2q
> ρ,

then

Γχq ≤ Γβ .

For any u ∈ H̄qT ,

un =

[ qT−β2β ]∑
k=1

bk sin
ωβk

q
n.

Consequently,

J(u) =
1

2
u∗Xu−

qT∑
n=1

F (n, un)

≥ 2 sin2 ωγ

2q
‖x‖2 −

qT∑
n=1

F (n, un), (3.7)

where x = (∆u1,∆u2, · · · ,∆uqT )∗.
Since

4 sin2 ωγ

2q
‖u‖2 ≤ ‖x‖2 =

qT∑
n=1

(un+1 − un, un+1 − un) = u∗Eu ≤ 4 ‖u‖2 ,

we get (
4 sin2 ωγ

2q

)2

‖u‖2 ≤ u∗Xu ≤ 16‖u‖2. (3.8)

By (3.7) and (3.8), we have

J(u) ≥ 8 sin4 ωβ

2q
‖u‖2 −

(
qT∑
n=1

f2(n, 0)

) 1
2

‖u‖ − ρ

2
‖u‖2
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≥ − 1

2
(

16 sin4 ωβ
2q − ρ

) qT∑
n=1

f2(n, 0)

≥ − q

2
(

16 sin4 ωβ
2q − ρ

) qT∑
n=1

f2(n, 0)

= Γβ . (3.9)

(3.9) contradicts to the assumption J(u) < Γχq . The proof is finished. �

4. Proofs of theorems

Proof of Theorem 1.1. It comes from Lemma 3.2 that J(u) satisfies the Palais-
Smale condition. For the sake of proving Theorem 1.1 by using the Saddle
Theorem, we shall prove the assumptions (J1) and (J2).

Let D1 = X0 and D2 = X+. On one hand, for any v ∈ X0 = D1, we have

J(v) =
1

2
v∗Xv −G(v) = −G(v).

By (F2),

lim
‖v‖→∞, v∈D1

J(v) = −∞.

Consequently, there is a constant δ > 0 such that J |∂Bδ∩D1
≤ γ. This is clear

that the assumption (J1) of Lemma 3.2 is satisfied.
On the other hand, from (F1), there are constants a3 > 0 and a4 > 0 such

that

G(u) ≤ a3‖u‖1+θ + a4‖u‖θ + |G(0)|.
For any u ∈ X+, we have

J(u) =
1

2
u∗Xu−G(u)

≥ λ

2
‖u‖2 − a3‖u‖1+θ − a4‖u‖ − |F (0)|.

On account of 0 ≤ θ < 1, it is easy to see that there is a constant ϑ > 0 such
that J(u) ≥ ϑ for any u ∈ X+. Thus, taking e = 0, the assumption (J2) in
Lemma 3.2 is satisfied.

The assumptions of (J1) and (J2) in Lemma 3.2 hold. Therefore, (1.1) admits
at least one qT -periodic solution.

Next, by Lemma 3.4, it sufficient to show that

J(u) < Γχq ,∀u ∈ H̄qT . (4.1)

Owing to (F3), for |u| ≤ σ, we have

F (n, u) = f(n, 0)u+
1

2
× ∂2F (n, ξu)

∂u2
u2 ≥ f(n, 0)u+

%

2
u2.
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Then

J(u) =
1

2
u∗Xu−

qT∑
n=1

F (n, un)

≤ 1

2
u∗Xu− %

2

qT∑
n=1

u2
n −

qT∑
n=1

f(n, 0)un. (4.2)

We choose

un = σ sin
ω

q
n.

Since f(n, 0) is T -periodic and f(−n, 0) = f(n, 0), we get

f(n, 0) =

[T−1
2 ]∑

k=1

ak sin
2kπ

T
n =

[T−1
2 ]∑

k=1

ak sin
2kπ

qT
qn,

where ak is a constant. In virtue of q > 1 and T ≥ 3,

qT∑
n=1

f(n, 0)un =

[T−1
2 ]∑

k=1

σak

qT∑
n=1

sin
2kπ

qT
qn · sin 2π

qT
n = 0.

Accordingly, by (4.2),

J(u) ≤ 2

(
16 sin4 ω

2q
− %
)
‖u‖2. (4.3)

It is easy to see that

‖u‖ = σ
(qπ
ω

) 1
2

.

Combining with (4.3),

J(u) =
2
(

16 sin4 ω
2q − %

)
σ2qπ

ω
< Γχq .

(4.1) holds and this finishes the proof. �

Proof of Corollary 1.1. For any prime integer q > 0, it is evident that χq = q.
For this reason,

qT∑
n=1

f2(n, 0) <
4πσ2

(
16 sin4 ω

2 − ρ
) (
%− 16 sin4 ω

2q

)
ω

.

As a result of Theorem 1.1, (1.1) admits at least one periodic solution with
minimal period qT . �

Remark 4.1. The techniques of the proof of Theorem 1.2 are similar to those
carried out in the proof of Theorem 1.1. For simplicity, we omit its proof.

Remark 4.2. Thanks to Theorem 1.2, similar to the proof of Corollary 1.1, the
conclusion of Corollary 1.2 is clearly right.
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Remark 4.3. As an application of Theorem 1.1, we give a example to illustrate
our main result.

Example 4.1. For q = 4, assume that

∆4un−2 =
1

9
sin

(
2nπ

3
un

)
u2
n, n ∈ Z. (4.4)

We have

ω =
2π

3
, χq = 2, T = 3,

and

f(s, u) =
1

9
sin

(
2sπ

3
u

)
u2.

It is easy to verify all the assumptions of Theorem 1.1 are satisfied. Consequently,
(4.4) admits at least one periodic solution with minimal period 12.
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