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EXISTENCE THEOREMS OF BOUNDARY VALUE

PROBLEMS FOR FOURTH ORDER NONLINEAR DISCRETE

SYSTEMS†
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Abstract. In the manuscript, we concern with the existence of solutions

of boundary value problems for fourth order nonlinear discrete systems.

Some criteria for the existence of at least one nontrivial solution of the
problem are obtained. The proof is mainly based upon the variational

method and critical point theory. An example is presented to illustrate the

main result.
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1. Introduction

We define N by the sets of all natural numbers, define Z by the sets of integers,
define R by the sets of real numbers. For a, b ∈ Z and a ≤ b, let Z[a, b] := Z∩[a, b].
Let u* be the transpose of a vector u.

Consider the boundary value problem (BVP) consisting of the fourth order
nonlinear discrete system

∆2(pn−2∆2un−2) + qnun = f(n, un), n ∈ Z[1, k], (1.1)

and boundary value conditions

∆iu−1 = ∆iuk−1, i = 0, 1, 2, 3, (1.2)

where ∆jun = ∆(∆j−1un) (j = 2, 3, 4), ∆0un = un, ∆un = un+1 − un, p ∈
C(R,R), p−1 = pk−1, p0 = pk, q ∈ C(R,R), f(s, u) ∈ C(R2,R), k ≥ 1 is an
integer.
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The problem (1.1) and (1.2) can be viewed as being a discrete analogue of
the fourth order boundary value problem of differential equation

[p(t)u′′(t)]
′′ − q(t)u(t) = f(t, u(t)), t ∈ (0, 1), (1.3)

and
u(i)(0) = u(i)(1), i = 0, 1, 2, 3. (1.4)

In recent years, many authors have devoted to the study of the BVP (1.3) and
(1.4) and differential equations similar in structure to (1.3) by employing various
methods and obtained some interesting results, see [1, 2, 3, 6, 7, 10, 11, 12, 13,
15, 16, 19, 25, 26].

Difference equations [4, 5, 8, 9, 17, 18, 20, 21, 22, 23, 27, ?, 29, 30, 31],
the discrete analogue of differential equations, have played an important role in
analysis of mathematical models of biology, physics and engineering.

Thandapani and Arockiasamy [28] in 2001 considered the fourth-order differ-
ence equation of the form,

∆2
(
rn∆2un

)
+ f(n, un) = 0, n ∈ N(n0),

where f(n, u) may be classified as superlinear, sublinear, strongly superlinear,
and strongly sublinear. In superlinear and sublinear cases, necessary and suf-
ficient conditions are obtained for the existence of nonoscillatory solutions. In
strongly superlinear and strongly sublinear cases, necessary and sufficient con-
ditions are given.

Chen and Tang [8] concerned with the existence of infinitely many homoclinic
orbits from 0 of the fourth-order difference system

∆4un−2 + qnun = f(n, un+1, un, un−1), n ∈ Z.
By using the symmetric mountain pass theorem, they established some existence
criteria to guarantee the above system have infinitely many homoclinic orbits.

In [19], the paper dealt with the periodic solutions of a class of fourth-order
superlinear differential equation

u(4) − cu′′ + a(x)u− ∂F (x, u, v)

∂u
= 0, 0 < x < L,

u(4) − du′′ + b(x)v − ∂F (x, u, v)

∂v
= 0, 0 < x < L,

u(0) = u′′(0) = u(L) = u′′(L) = 0,

v(0) = v′′(0) = v(L) = v′′(L) = 0.

By making use of the classical variational techniques and symmetric mountain
pass lemma, the periodic solutions of a single equation in literature are extended
to that of equations. What’s more, the cubic growth of nonlinear term is ex-
tended to a general form of superlinear growth.

By using fixed point index theorems, He, sun and Chen [14] considered more
general m-point boundary value problem with variable coefficients as follows,

∆4un−2 +Bn∆2un−1 −Anun = f(n, un), n ∈ Z[a+ 1, b+ 1],
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and

ua =

m−2∑
i=1

aiu(li), ub+2 =

m−2∑
i=1

biu(li),

∆2ua−1 =

m−2∑
i=1

ai∆
2u(li − 1), ∆2ub+1 =

m−2∑
i=1

bi∆
2u(li − 1),

and obtained the existence of positive solutions.
In 2018, Xia [29] considered the following higher order nonlinear difference

equation containing both many advances and retardations
n∑
i=0

ri(Xk−i +Xk+i) + f(k,Xk+Γ, · · · , Xk, · · · , Xk−Γ) = 0, n ∈ N, k ∈ Z.

The existence of periodic solutions are obtained by using variational techniques
and the Saddle Point Theorem.

Motivated by the recent papers [5, 10], in this paper, the existence of solutions
of boundary value problems fourth order nonlinear discrete systems is studied.
We obtain some criteria for the existence of at least one nontrivial solution of the
problem. The proof is mainly based upon the variational method and critical
point theory. An example is presented to illustrate the main result.

We define F (s, u) as

F (s, u) =

∫ u

0

f(s, t)dt,

for any (s, u) ∈ R2.
This paper is divided into six parts. Section 2, variational framework is

established. In Section 3, we state the theorems obtained. Section 4 contains
two basic lemmas which are useful in proof of our results. In Section 5, we finish
the proofs of the theorems. Finally, in section 6, we give an example to illustrate
the main result.

2. Variational framework

In this section, the necessary background needed to apply the variational
methods used to prove our main results are presented.

Define the set U by

U := {u : Z[−1, k + 2]→ R|∆iu−1 = ∆iuk−1, i = 0, 1, 2, 3},
and define

(u, v) :=

k∑
j=1

ujvj , ∀u, v ∈ U,

and

‖u‖ :=

 k∑
j=1

u2
j

 1
2

, ∀u ∈ U.



402 Lianwu Yang

For any u ∈ U and r > 1, let the norm ‖ · ‖r be

‖u‖r =

 k∑
j=1

|uj |r
 1

r

.

By all appearance, ‖u‖ = ‖u‖2. In that ‖u‖r and ‖u‖ are equivalent, there
exist two constants d2 ≥ d1 > 0 such that

d1‖u‖ ≤ ‖u‖r ≤ d2‖u‖, ∀u ∈ U. (2.1)

Remark 2.1. By (1.2), we have

u−1 = uk−1, u0 = uk, u1 = uk+1, u2 = uk+2, ∀u ∈ U. (2.2)

In reality, U is isomorphic to Rk. In a whole paper, when we say

u = (u1, u2, · · · , uk) ∈ Rk

, we always mean that u can be extended to a vector in U so that (2.2) holds.

We define J as

J(u) := −1

2

k∑
n=1

pn−2

(
∆2un−2

)2 − k∑
n=1

qnu
2
n +

k∑
n=1

F (n, un),∀u ∈ U. (2.3)

Therefore, J ∈ C(U,R) and

∂J

∂un
= −∆2(pn−2∆2un−2)− qnun + f(n, un), n ∈ Z[1, k].

Thus, J ′(u) = 0 when and only when

∆2(pn−2∆2un−2) + qnun = f(n, un), n ∈ Z[1, k].

So, we reduce the problem of finding a solution of the BVP (1.1) and (1.2)
to that of seeking a critical point of the functional J on U . Denote the k × k
matrix A as below.

If k = 1, denote A = (0).
If k = 2, denote

A =

(
p−1 + 4p0 + 3p1 + q1 −2p0 − 4p1 − 2p2

−2p0 − 4p1 − 2p2 p0 + 4p1 + 3p2 + q2

)
.

If k = 3, denote

A =

 p−1 + 4p0 + p1 + q1 p2 − 2(p0 + p1) p1 − 2(p2 + p3)
p2 − 2(p0 + p1) p0 + 4p1 + p2 + q2 p3 − 2(p1 + p2)
p1 − 2(p2 + p3) p3 − 2(p1 + p2) p1 + 4p2 + p3 + q3

 .

If k = 4, denote

A =


p−1 + 4p0 + p1 + q1 −2(p0 + p1) p1 + p3 −2(p3 + p4)

−2(p0 + p1) p0 + 4p1 + p2 + q2 −2(p1 + p2) p2 + p4
p1 + p3 −2(p1 + p2) p1 + 4p2 + p3 + q3 −2(p2 + p3)

−2(p3 + p4) p2 + p4 −2(p2 + p3) p2 + 4p3 + p4 + q4

 .
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If k ≥ 5, denote

A =



s1 r1 p1 0 · · · 0 pk−1 ak
r1 s2 r2 p2 · · · 0 0 pk
p1 r2 s3 r3 · · · 0 0 0
0 p2 r3 s4 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · rk−3 pk−3 0
0 0 0 0 · · · bk−2 rk−2 pk−2

pk−1 0 0 0 · · · rk−2 sk−1 rk−1

rk pk 0 0 · · · pk−2 rk−1 sk


,

where sn = pn + 4pn−1 + pn−2, rn = −2(pn−1 + pn), n = 1, 2, · · · , k.
Forasmuch, J(u) can be rewritten by

J(u) = −1

2
u∗Au+

k∑
n=1

F (n, un). (2.4)

3. Theorems obtained

Now, in this section, we give theorems obtained.

Theorem 3.1. Assume that the following assumptions are satisfied.
(p) For any n ∈ Z[−1, k], pn ≥ 0.
(A) b1+s1+p1+pk−1+sk = 0, r2+s2+p2+pk+s1 = 0, rn+sn+pn+pn−2+sn−1 =
0, n = 3, 4, · · · , k.
(F1) For any n ∈ Z[1, k], F (n, 0) = 0, f(n, u) = 0 when and only when u = 0.
(F2) For any n ∈ Z[1, k], there exists a number 1 < σ < 2 such that

0 < uf(n, u) < σF (n, u), ∀u 6= 0.

(F3) For any n ∈ Z[1, k], there exist numbers a1 > 0 and 1 < ς ≤ σ such that

F (n, u) ≥ a1 |u|ς , ∀u ∈ R.

Then the BVP (1.1) and (1.2) admit at least one nontrivial solution.

Theorem 3.2. Assume that (p), (A), (F1) and the following assumptions are
satisfied.
(F4) For any n ∈ Z[1, k], there exists a number K > 0 such that

|f(n, u)| ≤ K, ∀u ∈ R.

(F5) F (n, u)→ +∞ uniformly for n ∈ Z[1, k] as |u| → +∞.
(F6) For any n ∈ Z[1, k], there exist numbers a2 > 0 and 1 < τ < 2 such that

F (n, u) ≥ a2 |u|τ , ∀u ∈ R.

Then the BVP (1.1) and (1.2) admit at least one nontrivial solution.
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If f(n, un) = ϕ(un), (1.1) reduces to the following autonomous fourth order
nonlinear discrete system,

∆2(pn−2∆2un−2) + qnun = ϕ(un), n ∈ Z[1, k], (3.1)

where ϕ ∈ C(R,R).

Theorem 3.3. Assume that (p), (A) and the following assumptions are satisfied.
(Φ) There exists a function Φ(u) ∈ C1(R,R) such that

Φ′(u) = ϕ(u),∀u ∈ R.

(ϕ1) ϕ(0) = 0.
(ϕ2) There exists a number 1 < σ̂ < 2 such that

0 < uϕ(u) < σ̂Φ(u), ∀u 6= 0.

(ϕ3) There exist numbers a3 > 0 and 1 < ς̂ ≤ σ̂ such that

Φ(u) ≥ a3 |u|ς̂ , ∀u ∈ R.

Then the BVP (3.1) and (1.2) admit at least one nontrivial solution.

Theorem 3.4. Assume that (p), (A), (Φ) and the following assumptions are
satisfied.
(ϕ4) There exists a number K̂ > 0 such that

|ϕ(u)| ≤ K̂, ∀u ∈ R.

(ϕ5) lim
|u|→+∞

Φ(u) = +∞.

(ϕ6) There exist numbers a4 > 0 and 1 < τ̂ < 2 such that

Φ(u) ≥ a4 |u|τ̂ , ∀u ∈ R.

Then the BVP (3.1) and (1.2) admit at least one nontrivial solution.

It comes from (p) and (A) that 0 is an eigenvalue of A and (1, 1, · · · , 1)∗ is an
eigenvector of A corresponding to 0. Let λ1, λ2, · · · , λk−1 be other eigenvalues
of A. Applying matrix theory, we have λj > 0 for all j = 1, 2, · · · , k − 1.

Let

λmin = min {λj |λj 6= 0, i = 1, 2, · · · , k − 1} , (3.2)

and

λmax = max {λj |λj 6= 0, i = 1, 2, · · · , k − 1} . (3.3)

It is obvious that the eigenspace of A associated with 0 is

U2 = {u ∈ U : u = {c}, c ∈ R}.

Assume that U1 is the direct orthogonal complement of U to U2, that is,

U = U1 ⊕ U2.
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4. Two basic lemmas

Let U be a real Banach space and J ∈ C1(U,R). In general, J satisfies the

Palais-Smale condition if every sequence
{
u(i)
}∞
i=1
⊂ U , such that

{
J
(
u(i)
)}∞
i=1

is bounded and J ′
(
u(i)
)
→ 0 (i→∞), has a convergent subsequence in U .

Suppose that U is a real Banach space. Let the symbol be Bρ the open ball
in U about 0 of radius ρ, ∂Bρ be its boundary, and B̄ρ be its closure.

Lemma 4.1. (Saddle Point Theorem [24]). Suppose that U is a real Banach
space, U = U1 ⊕ U2, where U1 6= {0} and is finite dimensional. Suppose that
J ∈ C1(U,R) satisfies the Palais-Smale condition and
(J1) there are constants ε, η > 0 such that J |∂Bη∩U1

≤ ε;
(J2) there is ξ ∈ Bη ∩ U1 and a constant χ > ε such that Jξ+U2

≥ χ.
Then J admits a critical value c ≥ χ, where

c = inf
g∈Ω

max
u∈Bη∩U1

J(g(u)), Ω = {g ∈ C(B̄η ∩ U1, U) | g|∂Bη∩U1
= I}

and I defines as the identity operator.

Lemma 4.2. Suppose that the suppositions (p), (A) and (F1)− (F3) hold. Then
J satisfies the Palais-Smale condition.

Proof. Assume that
{
u(i)
}∞
i=1
⊂ U is such that

{
J
(
u(i)
)}∞
i=1

is bounded and

J ′
(
u(i)
)
→ 0 (i→∞). Therefore, we have a positive constant a5 such that∣∣∣J (u(i)

)∣∣∣ ≤ a5,∀i ∈ N,

and for sufficiently large i, we have∣∣∣(J ′ (u(i)
)
, u(i)

)∣∣∣ ≤ ∥∥∥u(i)
∥∥∥ .

From (2.4), we have(
J ′
(
u(i)
n

)
, u(i)
n

)
= −

(
u(i)
n

)∗
A
(
u(i)
n

)
+

k∑
n=1

f
(
n, u(i)

n

)
u(i)
n .

Hence, for sufficiently large i,

a5 +
1

2

∥∥∥u(i)
∥∥∥ ≥ J (u(i)

)
− 1

2

(
J ′
(
u(i)
n

)
, u(i)
n

)
=

k∑
n=1

[
F
(
n, u(i)

n

)
− 1

2
f
(
n, u(i)

n

)
u(i)
n

]
.

By (F2), (F3) and (2.1), we have

a5 +
1

2

∥∥∥u(i)
∥∥∥ ≥ (1− σ

2

) k∑
n=1

F
(
n, u(i)

n

)
≥
(

1− σ

2

)
a1

k∑
n=1

∣∣∣u(i)
n

∣∣∣ς
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≥
(

1− σ

2

)
a1d

ς
1

∥∥∥u(i)
∥∥∥ς .

Consequently, (
1− σ

2

)
a1d

ς
1

∥∥∥u(i)
∥∥∥ς − 1

2

∥∥∥u(i)
∥∥∥ ≤ a5. (4.1)

Since 1 < σ < 2 and 1 < ς ≤ σ, (4.1) implies that
{
u(i)
}∞
i=1

is bounded in
U . What’s more, U is finite dimensional. Therefore, there is a subsequence of{
u(i)
}∞
i=1

, which is convergent in U and the proof of the Palais-Smale condition
is finished. �

5. Proofs of theorems

Proof of Theorem 3.1. From Lemma 4.2, J satisfies the Palais-Smale condition.
We shall prove this theorem using the Saddle Point Theorem. It is sufficient to
verify the suppositions (J1) and (J2).

Firstly, we verify the supposition (J1). The supposition (F2) implies that
there exist numbers a6 > 0 and a7 > 0 such that

F (n, un) ≤ a6|u|σ + a7,∀n ∈ Z[1, k]× R. (5.1)

By (5.1) and (2.1), for any u(1) ∈ U1,

J
(
u(1)

)
= −1

2

(
u(1)

)∗
A
(
u(1)

)
+

k∑
n=1

F
(
n, u(1)

n

)
≤ −λmin

2

∥∥∥u(1)
∥∥∥2

+ a6

k∑
n=1

∣∣∣u(1)
n

∣∣∣σ + a7k

≤ −λmin

2

∥∥∥u(1)
∥∥∥2

+ a6d
σ
2

√
k
∥∥∥u(1)

∥∥∥σ + a7k.

Set
ε = a7k.

Since 1 < σ < 2, there is a positive number η sufficiently large such that

J |∂Bη∩U1 ≤ ε.
Thus, J satisfies the supposition (J1).

Secondly, we verify the supposition (J2). For any given u(0) ∈ U1 and u(2) ∈
U2, let u = u(0) + u(2). Therefore, by (F3) and (2.1),

J(u) = −1

2
u∗Au+

k∑
n=1

F (n, un)

= −1

2

(
u(0)

)∗
A
(
u(0)

)
+

k∑
n=1

F
(
n, u(0)

n + u(2)
n

)
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≥ −λmax

2

∥∥∥u(0)
∥∥∥2

+ a1

k∑
n=1

∣∣∣u(0)
n + u(2)

n

∣∣∣ς
≥ −λmax

2

∥∥∥u(0)
∥∥∥2

+ a1d
ς
1

[
k∑

n=1

∣∣∣u(0)
n + u(2)

n

∣∣∣2]
ς
2

= −λmax

2

∥∥∥u(0)
∥∥∥2

+ a1d
ς
1

[∥∥∥u(0)
∥∥∥2

+
∥∥∥u(2)

∥∥∥2
] ς

2

≥ −λmax

2

∥∥∥u(0)
∥∥∥2

+ a1d
ς
1

∥∥∥u(0)
∥∥∥ς + a1d

ς
1

∥∥∥u(2)
∥∥∥ς .

Combining with 1 < ς < 2, we have that there is a positive number % sufficiently
small such that

J
(
u(0) + u(2)

)
≥ %ς

(
a1d

ς
1 −

λmax

2
%2−ς

)
> 0,

for any given u(0) ∈ U1,
∥∥u(0)

∥∥ = % and for any u(2) ∈ U2.
Denote

χ = %ς
(
a1d

ς
1 −

λmax

2
%2−ς

)
.

Therefore, there is ξ = u(0) ∈ B% ∩ U1 and a constant χ ≥ ε such that

Jξ+U2 ≥ χ.

Hence, J satisfies the supposition (J2).
From the Saddle Point Theorem, there is a critical point ũ ∈ U , which corre-

sponds to a solution of (1.1) and (1.2).
Finally, we verify that ũ is nontrivial, namely, ũ 6∈ U2. Or else, ũ ∈ U2, which

means that there is a constant d ∈ R such that ũn = d,∀n ∈ Z[1, k].
Since J ′(ũ) = 0, then

−ũ∗Aũ+ f(n, ũn) = 0,∀n ∈ Z[1, k].

Hence, f(n, ũn) = f(n, d) = 0,∀n ∈ Z[1, k]. On the basis of (F1), d = 0. For
this reason, again from (F1),

J(ũ) =

k∑
n=1

F (n, ũ) =

k∑
n=1

F (n, d) = 0,

which is a contradiction with J(ũ) ≥ χ > 0. Consequently, the BVP (1.1) and
(1.2) admit at least one nontrivial solution. �

Remark 5.1. Similar to the proof of Theorem 3.1, we can verify the result of
Theorem 3.2. For simplicity, the proof is omitted.

Remark 5.2. The conclusion of Theorem 3.3 is obtained from Theorem 3.1 and
the conclusion of Theorem 3.4 is obtained from Theorem 3.2.
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6. An Example

As an application of Theorem 3.1, in this section, we give an example to
illustrate the main result.

Example 6.1. Consider the equation

∆2(n∆2un−2) = ςun|un|ς−2 + σun|un|σ−2, n ∈ Z[1, 4], (6.1)

and boundary value conditions

u−1 = u3, ∆u−1 = ∆u3, ∆2u−1 = ∆2u3, ∆3u−1 = ∆3u3. (6.2)

Here 1 < ς ≤ σ < 2. We have

pn = n+ 2, qn ≡ 0, n ∈ Z[1, 4],

with

p0 = 5, p1 = 6,

and

f(n, u) = ςu|u|ς−2 + σu|u|σ−2, F (n, u) = |u|ς + |u|σ.
Also,

A =


32 −18 8 −22
−18 22 −14 10

8 −14 24 −18
−22 10 −18 30

 ,

and the eigenvalues of A are λ1 = 0, λ2 ≈ 15.3568, λ3 ≈ 19.4814 and λ4 ≈
73.1618. It is easy to verify that all the suppositions of Theorem 3.1 are satisfied.
Hence, the BVP (6.1) and (6.2) admit at least one nontrivial solution.
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