• 제목/요약/키워드: forward selection

검색결과 307건 처리시간 0.023초

Bit Error Rate of Underlay Decode-and-Forward Cognitive Networks with Best Relay Selection

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Alexandropoulos, George C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.162-171
    • /
    • 2015
  • This paper provides an analytic performance evaluation of the bit error rate (BER) of underlay decode-and-forward cognitive networks with best relay selection over Rayleigh multipath fading channels. A generalized BER expression valid for arbitrary operational parameters is firstly presented in the form of a single integral, which is then employed for determining the diversity order and coding gain for different best relay selection scenarios. Furthermore, a novel and highly accurate closed-form approximate BER expression is derived for the specific case where relays are located relatively close to each other. The presented results are rather convenient to handle both analytically and numerically, while they are shown to be in good agreement with results from respective computer simulations. In addition, it is shown that as in the case of conventional relaying networks, the behaviour of underlay relaying cognitive networks with best relay selection depends significantly on the number of involved relays.

Power Allocation for Opportunistic Full-Duplex based Relay Selection in Cooperative Systems

  • Zhong, Bin;Zhang, Dandan;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.3908-3920
    • /
    • 2015
  • In this paper, performance analysis of full-duplex (FD) relay selection under decode-and-forward (DF) relaying mode is carried out by taking into account several critical factors, including the distributions of the received signal-to-noise ratio (SNR) and the outage probability of wireless links. The tradeoff between the FD and half-duplex (HD) modes for relay selection techniques is also analyzed, where the former suffers from the impact of residual self-interference, but the latter requires more channel resources than the former (i.e., two orthogonal channels are required). Furthermore, the impact of optimal power allocation (OPA) on the proposed relay-selection scheme is analyzed. Particularly, the exact closed-form expressions for outage probability of the proposed scheme over Rayleigh fading channels are derived, followed by validating the proposed analysis using simulation. Numerical results show that the proposed FD based scheme outperforms the HD based scheme by more than 4 dB in terms of coding gain, provided that the residual self-interference level in the FD mode can be substantially suppressed to the level that is below the noise power.

OAF 시스템의 정확한 심볼 오류 성능 분석 (Average SER Performance Analysis for Opportunistic Amplify-and-Forward Relay Systems)

  • 남상호;고균병;홍대식
    • 대한전자공학회논문지TC
    • /
    • 제49권4호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 레일리 페이딩 환경에서 OAF (opportunistic amplify-and-forward) 릴레이 전송 기법의 정확한 성능을 제시하는 새로운 분석 기법에 대해서 알아본다. 이를 위해 집합 연산 기반의 선택될 확률을 활용한다. 이를 기반으로 OAF 릴레이 전송기법의 수정된 MGF(modified moment generating function)를 제안한다. 제안된 MGF 를 바탕으로 OAF 릴레이 전송 기법의 특성을 정확하게 표현해주는 M-ary Phase Shift Keying (MPSK) 심볼 오류 확률을 제안한다. 모의 실험 결과를 통해서 제안된 심볼 오류 확률의 정확함을 확인한다.

Optimal Relay Selection and Power Allocation in an Improved Low-Order-Bit Quantize-and-Forward Scheme

  • Bao, Jianrong;He, Dan;Xu, Xiaorong;Jiang, Bin;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5381-5399
    • /
    • 2016
  • Currently, the quantize-and-forward (QF) scheme with high order modulation and quantization has rather high complexity and it is thus impractical, especially in multiple relay cooperative communications. To overcome these deficiencies, an improved low complex QF scheme is proposed by the combination of the low order binary phase shift keying (BPSK) modulation and the 1-bit and 2-bit quantization, respectively. In this scheme, the relay selection is optimized by the best relay position for best bit-error-rate (BER) performance, where the relays are located closely to the destination node. In addition, an optimal power allocation is also suggested on a total power constraint. Finally, the BER and the achievable rate of the low order 1-bit, 2-bit and 3-bit QF schemes are simulated and analyzed. Simulation results indicate that the 3-bit QF scheme has about 1.8~5 dB, 4.5~7.5 dB and 1~2.5 dB performance gains than those of the decode-and-forward (DF), the 1-bit and 2-bit QF schemes, at BER of $10^{-2}$, respectively. For the 2-bit QF, the scheme of the normalized Source-Relay (S-R) distance with 0.9 has about 5dB, 7.5dB, 9dB and 15dB gains than those of the distance with 0.7, 0.5, 0.3 and 0.1, respectively, at BER of $10^{-3}$. In addition, the proposed optimal power allocation saves about 2.5dB much more relay power on an average than that of the fixed power allocation. Therefore, the proposed QF scheme can obtain excellent features, such as good BER performance, low complexity and high power efficiency, which make it much pragmatic in the future cooperative communications.

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

Opportunistic Multiple Relay Selection for Two-Way Relay Networks with Outdated Channel State Information

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.389-405
    • /
    • 2014
  • Outdated Channel State Information (CSI) was proved to have negative effect on performance in two-way relay networks. The diversity order of widely used opportunistic relay selection (ORS) was degraded to unity in networks with outdated CSI. This paper proposed a multiple relay selection scheme for amplify-and-forward (AF) based two-way relay networks (TWRN) with outdated CSI. In this scheme, two sources exchange information through more than one relays. We firstly select N best relays out of all candidate relays with respect to signal-noise ratio (SNR). Then, the ratios of the SNRs on the rest of the candidate relays to that of the Nth highest SNR are tested against a normalized threshold ${\mu}{\in}[0,1]$, and only those relays passing this test are selected in addition to the N best relays. Expressions of outage probability, average bit error rate (BER) and ergodic channel capacity were obtained in closed-form for the proposed scheme. Numerical results and Simulations verified our theoretical analyses, and showed that the proposed scheme had significant gains comparing with conventional ORS.

Outage Probability of Decode-and-Forward Relaying Systems with Efficient Partial Relay Selection in Nakagami Fading Channels

  • Lee, Sangjun;Lee, Howon;Choi, Hyun-Ho;Lee, In-Ho
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.22-30
    • /
    • 2014
  • Recently, efficient partial relay selection (e-PRS) was proposed as an enhanced version of PRS. In comparing e-PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e-PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e-PRS in decode-and-forward (DF) relaying systems over non-identical Nakagami-m fading channels, where the fading parameter m is an integer. In particular, we provide closed-form expressions of the exact outage probability and asymptotic outage probability for e-PRS in DF relaying systems. Numerical results show that e-PRS achieves similar outage performance to that of BRS for a low or medium signal-to-noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.

Joint Relay-and-Antenna Selection and Power Allocation for AF MIMO Two-way Relay Networks

  • Wang, xiaoxiang;Zhou, Jia;Wang, DongYu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1016-1033
    • /
    • 2016
  • In this paper, we present a joint relay-and-antenna selection and power allocation strategy for multiple-input multi-output (MIMO) amplify-and-forward (AF) two-way relay networks (TWRNs). In our approach, we select the best transmit and receive antennas at the two sources, a best relay and a best transmit and receive antenna at the selected relay based on maximizing the minimum of the end-to-end received signal-to-noise-ratios (SNRs) under a total transmit power constraints. We obtained the closed-form solution for the optimal power allocation firstly. Then with the optimal allocation solution we found, we can reduce the joint relay-and-antenna selection to a simpler problem. Besides, the overall outage probability is investigated and a tight closed-form approximation is derived, which provides a method to evaluate the outage performance easily and fast. Simulation results are presented to verify the analysis.

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • 제15권1호
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.

Performance Analysis of Decode-and-Forward Relaying with Partial Relay Selection for Multihop Transmission over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.433-441
    • /
    • 2010
  • Multihop transmission is a promising technique that helps in achieving broader coverage (excellent network connectivity) and preventing the impairment of wireless channels. This paper proposes a cluster-based multihop wireless network that makes use of the advantages of multihop relaying, i.e., path loss gain, and partial relay selection in each hop, i.e., spatial diversity. In this partial relay selection, the node with the maximum instantaneous channel gain will serve as the sender for the next hop. With the proposed protocol, the transmit power and spectral efficiency can be improved over those in the case of direct transmission and conventional multihop transmission. Moreover, at a high signal-to-noise ratio (SNR), the performance of the system with at least two nodes in each cluster is dependent only on the last hop and not on any of the intermediate hops. For a practically feasible decode-and-forward relay strategy, a compact expression for the probability density function of the end-to-end SNR at the destination is derived. This expression is then used to derive closed-form expressions for the outage probability, average symbol error rate, and average bit error rate for M-ary square quadrature amplitude modulation as well as to determine the spectral efficiency of the system. In addition, the probability of SNR gain over direct transmission is investigated for different environments. The mathematical analysis is verified by various simulation results for demonstrating the accuracy of the theoretical approach.