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ABSTRACT 

Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practi-
cal investment decision-making problem. However, the existing literature on this field is almost undertaken by regard-
ing security returns as random variables in the framework of probability theory. Different from these works, we as-
sume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a 
risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncer-
tain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold con-
straints into account, which an optimal investment policy can be generated to help investors not only achieve an opti-
mal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each 
stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dy-
namic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path 
dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In 
addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed 
algorithm. 
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1.  INTRODUCTION 

Portfolio optimization problem concerns with an in-
dividual who is trying to allocate one’s capital to a selec-
ted number of securities in order to achieve the invest-
ment goal. In a seminal paper, Markowitz (1952) pre-
sented the idea of an optimal portfolio selection by taking 
into account the trade-off between the portfolio expected 
return and its risk which is measured by the variance of 
the portfolio. Since then, variance has been widely used 
as a risk measure, and a large number of models have 
been investigated. Konno and Yamazaki (1991) provided 
a linear model for portfolio optimization in which the 
absolute deviation was used to measure the risk of the 
portfolio. In particular, when the returns of securities are 

multivariate-normally distributed, the model is equiva-
lent to Markowitz’s mean-variance model. Based on 
absolute deviation, numerous models were developed. 
Ie., Simaan (1997) provided a thorough comparison of 
the mean variance model and the mean absolute devia-
tion model; Speranza (1993) used the semi-absolute 
deviation to measure the risk and formulated a portfolio 
selection model. However, the previous papers mainly 
consider single period portfolio selection problem. In 
fact, typically portfolio strategies are periodically rebal-
anced in a planning horizon, since the investor will ad-
just his/her portfolio to purse the better strategy from 
time to time. Therefore, multiperiod portfolio selection 
models are in accordance with the practical situation. 

Up to now, multiperiod portfolio selection problem 

Industrial Engineering  
& Management Systems 
Vol 15, No 1, March 2016, pp.63-76 http://dx.doi.org/10.7232/iems.2016.15.1.063
ISSN 1598-7248│EISSN 2234-6473│ © 2016 KIIE



Zhang: Industrial Engineering & Management Systems 
Vol 15, No 1, March 2016, pp.63-76, © 2016 KIIE 64
  

 

attracted more and more attentions both in practice and 
in theory. The first formulation of the multiperiod port-
folio selection problem has already been given in the 
book of Markowitz (1959) followed by the papers of 
Mossin (1968), Samuelson (1969) and Merton and Sa-
muelson (1974). Although it is heavily discussed in re-
cent literature (see e.g., Li and Ng, 2000; Zhu et al., 
2004; Güpınar and Rustem, 2007; Çelikyurt and Özekici, 
2007; Calafiore, 2008; Yan et al., 2009, 2012; Yu et al. 
2010, 2012; Wu and Li, 2012; Li and Li, 2012; Zhang et 
al., 2012, 2014; Liu et al., 2012, 2013; Zhang and Zhang, 
2014; Bodnar et al., 2015), to the best of our knowledge, 
a closed-form solution is not available in the general 
case up to now. Closed-form solutions are presented only 
under the assumption of independence, ie. Li and Ng (2000) 
used dynamic programming approach to deal with the 
multiperiod mean variance portfolio selection problem 
by using the idea of embedding the problem in a tracta-
ble auxiliary problem. Then, they obtained breakthrough 
result, that is, the optimal mean-variance port-folio policy 
and the efficient frontier; Zhu et al. (2004) incorporated 
a control of the probability of bankruptcy in the general-
ized mean variance formulation for multiperiod portfolio 
optimization; Yu et al. (2010, 2012) discussed a dynamic 
portfolio optimization problem with risk control for the 
absolute deviation model; Wu and Li (2012) investigate 
a non-self-financing portfolio optimization problem under 
the framework of multiperiod mean-variance with Markov 
regime switching and a stochastic cash flow; Li and Li 
(2012) represented a multiperiod portfolio optimization 
problem for asset-liability management of an investor 
who intends to control the probability of bankruptcy before 
reaching the end of an investment horizon. For more 
general model, the solution is frequently determined by 
a numerical procedure ie. van Binsbergen and Brandt 
(2007) compared the numerical performance of value 
function iterations with portfolio weight iterations in the 
context of the simulation-based dynamic programming 
approach; Mansini et al. (2007) presented multiperiod 
mean CVaR portfolio selection model; Güpınar and 
Rustem (2007) extend the multiperiod mean-variance 
optimization framework to worst-case design with mul-
tiple rival return and risk scenarios; Yan et al. (2009, 
2012) proposed a hybrid genetic algorithm with particle 
swarm optimizer to solve a class of multiperiod semi-
variance portfolio selection with a four-factor futures price 
model and a multiperiod semi-variance portfolio selec-
tion; Zhang et al. (2012, 2014), and Liu et al. (2012, 2013) 
respectively proposed genetic algorithm, hybrid intelli-
gent algorithm and differential evolution algorithm to 
solve several kinds of multiperiod fuzzy portfolio selec-
tion models; Zhang and Zhang (2014) proposed the dis-
crete approximate iteration method to solve the multipe-
riod fuzzy portfolio selection model with cardinality 
constraints; Köksalan and Şakar (2014) consider expec-
ted return, conditional value at risk, and liquidity criteria 
in a multiperiod portfolio optimization setting modeled 
by stochastic programming. 

In real life, we frequently do not have enough data 
to estimate the probability distribution of security returns, 
which implies that random portfolio selection models 
are difficult to be employed. In this situation, a better 
way is to estimate security returns by experienced ex-
perts such as fund managers, which implies that security 
returns are fuzzy variables. Several researchers (Wang 
and Zhu, 2002; Terol et al., 2006; Fang et al., 2006; 
Vercher et al., 2007;, Zhang et al., 2007, 2009; Huang, 
2008; Li et al., 2010; Liu and Liu, 2002; Huang, 2008; 
Li et al., 2010; Zhang and Liu, 2014) have utilized fuzzy 
set theory to investigate portfolio selection problem by 
regarding security returns as fuzzy variables instead of 
random variables. Different from random variables and 
fuzzy variables, Liu (2007) proposed the concept of un-
certain variable and established uncertainty theory to 
study the behavior of uncertain phenomena. As an ap-
plication, Qin et al. (2009) introduced the singleperiod 
mean-variance model for portfolio selection under un-
certain environment. Similarly, Li and Qin (2014) pro-
posed a mean- semi absolute deviation model for uncer-
tain portfolio selection.  

The contribution of this work is as follows. We ori-
ginally represent uncertain absolute deviation to meas-
ure portfolio risk, and propose a new multiperiod mean 
absolute deviation uncertain portfolio selection model 
with borrowing constraints, transaction costs and thre-
shold constraints. We design a novel forward dynamic 
programming method for solution. Finally, we give an 
example to illustrate the idea of the model and demon-
strate the effectiveness of the designed algorithm.  

This paper is organized as follows. In Section 2, 
several concepts, properties of uncertain measure, the 
definitions of the uncertain mean and the uncertain ab-
solute deviation are introduced, respectively. In Section 
3, the borrowing constraints, transaction costs and thre-
shold constraints are formulated into the multiperiod 
portfolio, and a new multiperiod uncertain portfolio se-
lection model is proposed. The forward dynamic pro-
gramming method is proposed to solve it in Section 4. In 
Section 5, a numerical example is also presented to il-
lustrate the modeling idea and the effectiveness of the 
designed algorithm. Finally, some conclusions are given 
in Section 6. 

2.  PRELIMINARIES 

Let Γ be a nonempty set, and let A be a σ-algebra 
over Γ. Each element of A is called an event. A set func-
tion is called an uncertain measure (Liu, 2007) if and 
only if it satisfies 
Axiom 1. (Normality) M{Γ} = 1; 
Axiom 2. (Monotonicity) M{A} ≤ M{B} whenever A ⊆ B; 
Axiom 3. (Self-duality) M{A}+M{Ac} = 1 for any event A; 
Axiom 4. (Subadditivity) 

1
( ) ( )i i ii

M A M A∞

=
≤ ∑U  for any 

countable sequence of events {Ai}. 
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Definition 1. (Liu, 2007) Let Γ be a nonempty set, and 
let A be a σ-algebra over it. If M is an uncertain measure, 
then the triplet (Γ, A, M ) is called an uncertainty space. 
Definition 2. (Liu, 2007) Uncertain variable ξ is defined 
as a measurable function from an uncertainty space (Γ, 
A, M) to the set of real numbers ℜ. That is, for any Borel 
set B, we have 
 

 { , ( ) }B Aγ ξ γ∈Γ ∈ ∈    (1) 
 
Definition 3. (Liu, 2007) Let ξ be an uncertain variable. 
Then the expected value of ξ is defined as 
 

 
0

0
[ ] { } { }E M x dx M x dxξ ξ ξ

+∞

−∞
= ≥ − ≤∫ ∫    (2) 

 
provided that at least one of the two integrals is finite. 

Based on Definition 3, Liu (2009) deduced the fol-
lowing two theorems. 
 
Theorem 1. (Liu (2009)) Let ξ be an uncertain variable 
with finite expected value. Then, for any real numbers a 
and b , it holds that 
 

E[a ξ + b] = a E[ξ] +b  (3) 
 
Theorem 2. (Linearity of Expected Value Operator, Liu 
(2009) Let ξ and η be independent uncertain variables 
with finite expected values. Then, for any real numbers 
a and b, it holds that 
 

( ) ( ) ( )E a b aE bEξ η ξ η+ = +    (4) 
 
Definition 4. (Liu, 2007) An uncertain variable ξ can be 
characterized by an uncertainty distribution which is a 
function Φ : ℜ → [0, 1] is defined as 
 

( ) { }t M tξΦ = ≤     (5) 
 
Definition 5. Let ξ be an uncertain variable with finite 
expected value e. Then the absolute deviation of ξ is 
defined by 
 

 ( ) [ ]AD E eξ ξ= −    (6) 
 

If ξ is an uncertain variable with expected value e, 
then its absolute deviation is used to measure the spread 
of its distribution about e.  

 
Theorem 3. Let ξ be an uncertain variable with finite 
expected value e. Then its uncertain absolute deviation 
is defined as 

( ) (1 ( )) ( )
e

e
AD r dr r drξ

+∞

−∞
= −Φ + Φ∫ ∫    (7) 

Proof. From the Definition 5 and Definition 3, it fol-
lows that 

 ( ) [ e ]AD Eξ ξ= −   
0

0
= { e } { e }M x dx M x dxξ ξ

+∞

−∞
− ≥ − − ≤∫ ∫  

0
= { e }M x dxξ

+∞
− ≥∫  

0 0
= { e } { e }M x dx M x dxξ ξ

+∞ +∞
− ≥ + − ≤ −∫ ∫  

= { } { }
e

e
M r dr M r drξ ξ

+∞

−∞
≥ + ≤∫ ∫  

= (1 { }) { }
e

e
M r dr M r drξ ξ

+∞

−∞
− ≤ + ≤∫ ∫  

= (1 ( )) ( )
e

e
r dr r dr

+∞

−∞
−Φ + Φ∫ ∫  

Thus, the proof of the theorem is ended.  
 
Theorem 4. Let ξ be an uncertain variable with finite 
expected value e. Then for any nonnegative real num-
bers λ, it holds 
 

 ( ) ( )AD ADλξ λ ξ=    (8) 
 
Proof. From the Definition 5, it follows that  

( ) [ ] [ ] = ( )AD E e E e ADλξ λξ λ λ ξ λ ξ= − = −  

Thus, the proof of the theorem is ended.  
 
Theorem 5. Let ξ be an uncertain variable with finite 
expected value e. Then for any nonnegative real num-
bers λ and for any real numbers η, it holds 

( ) ( )AD ADλξ η λ ξ+ =   (9) 

Proof. From the Definition 5, it follows that  

( ) [ ( ) ]AD E eλξ η λξ η λ η+ = + − +  
[ ] [ ]E e E eλ ξ λ ξ= − = −  

= ( )ADλ ξ  

Thus, the proof of the theorem is ended.  
 
If r = (a, b, c) be a triangle uncertain variable, then 

uncertainty distribution Φ(r) can be described as: 

0,                if ,

,    if ,
2( )

( )
2 ,  if ,

2( )
1,                if .

r a
r a a r b
b a

r
r c b b r c

c b
r c

≤⎧
⎪ −⎪ ≤ ≤
⎪ −

Φ = ⎨ + −⎪ ≤ ≤
⎪ −
⎪

≥⎩

  (10) 

The triangle uncertain variable is denoted by r(a, b, 
c) where a, b, c are real numbers with a < b < c. 
 
Theorem 6. If ξ (a, b, c) be a triangle uncertain variable, 
the expected value of ξ can be given by: 
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2( )
4

a b cE ξ + +
=    (11) 

Proof. From the Definition 3 and Theorem 6, it follows 
that  

0

0( ) { } { }E M r dr M r drξ ξ ξ+∞

−∞
= ≥ − ≤∫ ∫  

 0

0= (1 { }) { }M r dr M r drξ ξ+∞

−∞
− ≤ − ≤∫ ∫    (12) 

0

0       = (1 ( )) ( )r dr r dr+∞

−∞
−Φ − Φ∫ ∫  

According to Eq. (10), the right-hand side of Eq. (12) is  

0

0 0
(1 ( )) ( ) (1 0) (1 )

2( )
a b

a

r ar dr r dr dr dr
b a

+∞

−∞

−
−Φ − Φ = − + −

−∫ ∫ ∫ ∫
2(1 ) (1 1)

2( )
c

b c

r c b dr dr
c b

+∞+ −
+ − + −

−∫ ∫      (13)  

3 3 2=
4 4 4

b a c b a b ca − − + +
+ + =  

According to Eq. (12) and Eq. (13), we can get 

0

0 0
(1 ( )) ( ) (1 0)

a
r dr r dr dr

+∞

−∞
−Φ − Φ = −∫ ∫ ∫  

2(1 ) (1 )
2( ) 2( )

b c

a b

r a r c bdr dr
b a c b
− + −

+ − + −
− −∫ ∫  

 3 3 2(1 1)  =
4 4 4c

b a c b a b cdr a
+∞ − − + +

+ − + + =∫  

 
Thus, the proof of the theorem is ended.   
 
Theorem 7. Let ξ (a, b, c) be a triangle uncertain vari-

able, which 
2( ) .
4

a b cE ξ + +
=  Then, the uncertain abso-

lute deviation of ξ can be given by: 
 

2 2 2

2

4 12 4 6 9 ,  if 
32( )

( )
(3 2 ) ,                                if  

32( )

b ab bc ac a c c b b a
b a

AD
c a b c b b a

c b

ξ

⎧ − + − + +
− ≤ −⎪ −⎪= ⎨

− −⎪ − ≥ −⎪ −⎩

  

(14) 

Proof. From the Theorem 3, it follows that  

( ) (1 ( )) ( )
e

e
AD r dr r drξ

+∞

−∞
= −Φ + Φ∫ ∫        (15) 

       
2
4

2
4

(1 ( )) ( )
a b c

a b c r dr r dr
+ +

+∞

+ +
−∞

= −Φ + Φ∫ ∫  

If c－b ≤ b－a, the right-hand side of Eq. (15) is 

2
4

2 2
4 4

(1 ( )) ( ) (1 )
2( )

a b c b
a b c a b c

r ar dr r dr dr
b a

+ +
+∞

+ + + +
−∞

−
−Φ + Φ = −

−∫ ∫ ∫
2
4

0

2(1 ) (1 1) 0
2( ) 2( )

a b cc a

b c a

r c b r adr dr dr dr
c b b a

+ +
+∞+ − −

+ − + − + +
− −∫ ∫ ∫ ∫

2 2 2 220 28 12 10 9 (2 3 )
64( ) 4 64( )

b ab bc ac a c c b b a c
b a b a

− − + + + − − +
= + +

− −
 

2 2 224 40 8 4 18 2 16( )( )
64( ) 64

b ab bc ac a c c b b a
b a

− − + + + − −
= +

−
 (16) 

2 2 28 24 8 12 18 2
64( )

b ab bc ac a c
b a

− + − + +
=

−
 

2 2 24 12 4 6 9
32( )

b ab bc ac a c
b a

− + − + +
=

−
 

 
If c－b ≥ b－a, the right-hand side of Eq. (15) is 
 

2
4

2 2
4 4

2(1 ( )) ( ) (1 )
2( )

a b c c
a b c a b c

r c br dr r dr dr
c b

+ +
+∞

+ + + +
−∞

+ −
−Φ + Φ = −

−∫ ∫ ∫
2
4

0

2(1 1) 0
2( ) 2( )

a b ca b

c a b

r a r c bdr dr dr dr
b a c b

+ +
+∞ − + −

+ − + + +
− −∫ ∫ ∫ ∫  

2 2(3 2 ) (3 2 )
64( ) 64( )
c a b c a b

c b c b
− − − −

= +
− −

 (17) 

2(3 2 )
32( )
c a b

c b
− −

=
−

 

 
According to Eq. (16) and Eq. (17), we can get 
  

2 2 2

2

4 12 4 6 9 ,  if 
32( )

( )
(3 2 ) ,                                if  

32( )

b ab bc ac a c c b b a
b a

AD
c a b c b b a

c b

ξ

⎧ − + − + +
− ≤ −⎪ −⎪= ⎨

− −⎪ − ≥ −⎪ −⎩

 

 
Thus, the proof of the theorem is ended.   

3.  THE MULTIPERIOD PORTFOLIO 
SELECTION MODEL 

Assume that there are n risky assets and one risk-
free asset in financial market for trading. An investor 
wants to allocate his/her initial wealth W1 among n+1 
assets at the beginning of period 1, and obtains the final 
wealth at the end of period T. He/She can reallocate 
his/her wealth among the n risky assets at the beginning 
of each of the following T consecutive investment peri-
ods. Suppose that the return rates of the n risky assets at 
each period are denoted as triangular uncertain variables, 
and the returns of portfolios among different periods are 
independent of each other. For the sake of description, 
let us first introduce the following notations: 

 
xi0 the initial investment proportion of risky asset i at 

period 0; 
xt the portfolio at period t, where xt = (x1t, x2t , …, xnt); 
xft the investment proportion of risk-free asset at period 

t, where
1

1 ;
n

ft it
i

x x
=

= −∑  
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xb
ft the lower bound of the investment proportion of 

risk-free asset at period t, where xft  ≥ xb
ft; 

Rit the return of risky asset i at period t; 
rpt the return rate of the portfolio xt at period t; 
rbt the borrowing rate of the risk-free asset at period t; 
rlt the lending rate of the risk-free asset at period t; 
lit the lower bound constraints of xit; 
uit the upper bound constraints of xit; 
rNt the net return rate of the portfolio xt at period t; 
Wt  the crisp form of the holding wealth at the beginning 

of period t; 
cit  the unit transaction cost of risky asset i at period t. 

3.1 Return, Risk and Transaction Costs 

In this section, we employ the uncertain mean 
value of the net return on the portfolio at each period 
to measure the return of portfolio. The risk on the re-
turn rate of portfolio at each period is quantified by 
the uncertain absolute deviation. The return rate of 
security i at period t, Rit = (ait, bit, cit), is triangular un-
certain variable for all i = 1, …, n and t = 1, …, T.  

The uncertain mean value of the portfolio xt = 
(x1t , x2t , …, xnt )′ at period t can be expressed as 

 

1 1 1

2( ) 1 ,
4

n n n
it it it

pt it it it ft it
i i i

a b cr E R x x r x
= = =

+ + ⎛ ⎞⎛ ⎞= = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  (18) 

1, ,t T= L  
 

where 
1

1

, 1 0

, 1 0

n

lt it
i

ft n

bt it
i

r x
r

r x

=

=

⎧
− ≥⎪⎪= ⎨

⎪ − ≤⎪⎩

∑

∑
, .bt ltr r≥  When 

1
1

n

it
i

x
=

−∑   

0,≥  it denotes that lending is allowed on the risk-free 

asset; When 

1
1 0,

n

it
i

x
=

− ≤∑  it represents that borrowing is 

allowed on the risk-free asset. 
We assume in the sequel that the transaction costs 

at period t is a V shape function of difference between 
the tth period portfolio xt = (x1t, x2t , …, xnt) and the 
t−1th period portfolio x(t−1) = (x1(t−1), x2(t−1) , …, xn(t−1)). 
That is to say, the transaction cost for asset i at period t 
can be expressed by 

 
( 1)it it it i tC c x x −= −   (19) 

 
Hence, the total transaction costs of the portfolio xt 

= (x1t, x2t, …, xnt) at period t can be represented as 
 

( 1)
1

, 1, ,
n

t it it i t
i

C c x x t T−
=

= − =∑ L     (20) 

 
Thus, the net return rate of the portfolio xt at period 

t can be denoted as 

1 1

2 1
4

n n
it it it

Nt it ft it
i i

a b cr x r x
= =

+ + ⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑       (21) 

( 1)
1

. 1, ,
n

it it i t
i

c x x t T−
=

− − =∑ L  

Then, the crisp form of the holding wealth at the 
beginning of the period t can be written as 

1 (1 )t t NtW W r+ = +          (22) 

1 1

21 1
4

n n
it it it

t it ft it
i i

a b cW x r x
= =

⎛ + + ⎛ ⎞⎛ ⎞= + + −⎜ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝

∑ ∑  

( 1)
1

, 1, ,
n

it it i t
i

c x x t T−
=

⎞− − =⎟
⎠

∑ L  

The absolute deviation of the portfolio xt can be 
expressed as 

1 1 2 2( ) ( )t t t t t t t nt ntAD x AD r x r x r x= + + +L  (23) 

The main characteristic of this model is that the 
risk of a portfolio is measured by the absolute deviation 
of the return rate of assets instead of the variance.  

Threshold constraints limit the amount of capital to 
be invested in each stock and prevent very small invest-
ments in any stock. The threshold constraints of multi-
period portfolio selection can be expressed as 

0 it itx u≤ ≤     (24) 

where uit are respectively the upper bounds constraints 
of xit.  

For a rational investor, he/she wishes not only to 
maximize expected return but also to minimize the risk 
which is measured by the variance of the rate of return 
on a portfolio. So he/she must make a tradeoff between 
the two objectives. Let (1−θ) and θ be the weights asso-
ciated with criteria rpt and ADt(xt) respectively. Then the 
investor attempts to maximize 

 

1

2( , ( ))
4

n
it it it

t Nt t t it
i

a b cF r AD x x
=

+ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (25) 

( 1)
1 1

1
n n

ft it it it i t
i i

r x c x x −
= =

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠
∑ ∑  

 1 1 2 2( )t t t t t nt ntAD r x r x r xθ− + + +L          
 
Here the parameter θ can be interpreted as the risk 

aversion factor of the investor. The greater the factor θ 
is, the more risk aversion the investor has. In this paper, 
we assume that the investor is of risk aversion, i.e., θ ≥ 0. 

3.2 The Basic Multiperiod Portfolio Optimization 
Models 

When the investors can give a tolerable level of 
risk at period t, and want to maximize the terminal 
wealth at the given level of risk, we have the multipe-
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riod uncertain mean absolute deviation model as follows: 

1 1 1

2max 1
4

T n n
it it it

it ft it
t i i

a b c x r x
= = =

⎡ + + ⎛ ⎞⎛ ⎞ + −⎜ ⎟⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑  

( 1)
1

n

it it i t
i

c x x −
=

− −∑ 1 1 2 2( )]t t t t t nt ntAD r x r x r xθ− + + +L  

1
1 1

( 1)
1

1

21 1 ( )
4

.

1                                                        (b)

0 , 1, , , 1, ,         

n n
it it it

t it ft it
i i

n

it it i t t
i

n
b

it ft
i

it it

a b cW x r x a

c x x Ws t

x x

x u i n t T

+
= =

−
=

=

⎛ ⎛ + + ⎛ ⎞⎛ ⎞= + + −⎜ ⎜ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝⎝

⎞⎞− − ⎟⎟
⎠⎠

− ≥

≤ ≤ = =

∑ ∑

∑

∑
L L             (c)

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 (26) 

where vt denotes the maximum risk level the investors 
can tolerate. Constraint (a) denotes the wealth accumu-
lation constraint; constraint (b) indicates the investment 
proportion of risk-free asset at period t must exceed the 
given lower bound xb

ft; constraint (c) represents thresh-
old constraints of xit. 

According to Qin et al. (2011), if r1t, r2t, …, rnt are 
independent triangular uncertain variables, and xit ≥ 0, i 
= 1, …, n,  
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According to Eq. (27), the Model (26) can be turned 

into as follows: 
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Let ( 1) .it it i ty x x −= −  Then the Model (29) can be turned 
into as follows. 
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4.  SOLUTION ALGORITHM 

In this section, the forward dynamic programming 
method is proposed to solve the Model (30). 

4.1 The Forward Dynamic Programming Method 

The sub-problem of period t of the Model (30) can 
be transformed into 

  

1 1 1

2max [ ] (1 )
4

n n n
it it it

it ft it it it
i i i

a b c x r x c y
= = =

+ +⎛ ⎞+ − −⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

[ ]
1

( )
n

t it it
i

AD r xθ
=

⎛ ⎞− ⎜ ⎟
⎝ ⎠
∑  

1

( 1)

( 1)

1

y.
y ( )

0 , 1, ,

n
b

it ft
i

it it i t

it it i t

it it

x x

x xs t
x x

x u i n

=

−

−

⎧ − ≥⎪
⎪⎪ ≥ −⎨
⎪ ≥ − −⎪
⎪ ≤ ≤ =⎩

∑

L

      (31) 

 
In the following section, we provide the detailed 

procedure of the forward dynamic programming method 
for finding optimal solutions to the Model (30). The 
procedure of the algorithm can be showed as follows: 

 
Algorithm The forward dynamic programming method: 
 
Step1. When t = 1, W1 and x0 = (x10, …, xn0)’ have been 
given, the sub-problem of period 1 of the Model (30) 
can be transformed into 
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The optimal solution of period t = 1, 

* *
1 11( , ,x x= L  

* '
1)nx  can be obtained solving the Model (32) by the inte-

rior-point algorithms (Fang and Puthenpura, 1993). At 
the same time, 
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Step 3. If t = T, then the maximization of the terminal 
utility  
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and 

*
1TW +  can be obtained, respectively. Otherwise t = 

m+1, then turn Step 2. 
The global optimal solutions of the sub-problem of 

period t of the Model (30), ie. the Model (32) and Model 
(33) can be obtained by the interior-point algorithms 
(Fang and Puthenpura, 1993). So, the global optimal 
solution of the Model (30) can also be obtained by the 
forward dynamic programming method, ie., the global 
optimal solution of Model (26) can also be obtained.  

5.  NUMERICAL EXAMPLE 

In this section, a numerical example is given to ex-
press the idea of the proposed model. Assume that an 
investor chooses thirty stocks from Shanghai Stock Ex-
change for his investment. The stocks codes are respec-
tively S1, …, S30. He/She intends to make five periods 
of investment with initial wealth W1 = 1 and his wealth 
can be adjusted at the beginning of each period. He/she 
assumes that the returns, risk and turnover rates of the 
thirty stocks at each period are represented as trapezoi-
dal fuzzy numbers. We collect historical data of them 
from April 2006 to March 2015 and set every three 
months as a period to handle the historical data. By us-
ing the simple estimation method in Vercher et al. (2007) 
to handle their historical data, the triangular possibility 
distributions of the return rates of assets at each period 
can be obtained as shown in Appendix A. According to 
Eq. (14) and Appendix A, ADt(rit) (i = 1, …, 30; t = 1, 
…, 5) can be obtained as shown in Appendix B. 

 Suppose that the transaction costs of assets of the 
two periods investment take the same value cit = 0.003 (i 
= 1, …, 30; t = 1, …, 5), the lower bound of the in-
vestment proportion of risk-free asset xb

ft = -0.5, the bor-
rowing rate of the risk-free asset rbt = 0.017, the lending 
rate of the risk-free asset rlt = 0.009, t = 1, …, 5 ,the 
lower lit = 0 and upper bound constraints uit = 0.2 (i = 1, 
…, 30; t = 1, …, 5). 

In case when the preference coefficients θ = 0, 0.25, 
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0.5, 1, …, 5.75, the multiperiod uncertain mean abso-
lute deviation portfolio selection model maximizing the 
terminal utility is set as follows: 
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  (34) 

 
If θ = 1, the optimal solution of Model (34) will be 

obtained as the Table 1 using the forward dynamic pro-
gramming method. 

When θ = 1, the optimal investment strategy at pe-
riod 1 is x11 = 0.2, x31 = 0.1, x41 = 0.2, x81 = 0.2, x131 = 
0.2, x171 = 0.2, x261 = 0.2, x281 = 0.2, xf1 = −0.5 and being 
the rest of variables equal to zero, which means investor 
should allocate his initial wealth on asset 1, asset 3, as-

set 4, asset 8, asset 13, asset 17, asset 26, asset 28, risk-
free asset and otherwise asset by the proportions of 
20%,10%, 20%, 20%, 20%, 20%, 20% , 20%, -50% and 
being the rest of variables equal to zero among the thirty 
stocks, respectively. From Table 1, the optimal invest-
ment strategy at period 2, period 3, period 4 and period 
5 can also be obtained. In this case, the available termi-
nal wealth is 2.1327.  

If θ = 3.5, the optimal solution of Model (34) will 
be obtained as the Table 2 using the forward dynamic 
programming method. 

When θ = 3.5, the available terminal wealth is 
1.6163.  

 To display the influence of θ on the optimal solu-
tion of multiperiod, its value is set as 1 and 3.5, respec-
tively, and the Model (34) for portfolio decision-making 
will be used afterwards. After using the forward dy-
namic programming method, the corresponding optimal 
investment strategies can be obtained as shown in Table 
1 and Table 2. From Table 1 and Table 2, it can be seen 
that some of risk assets of the optimal solutions of θ = 6 
and θ = 7 are same. There are two assets in period 1, i.e. 
asset 3, asset 17. There are two assets in period 2, i.e. 
asset 15, asset 17. There are one asset in period 3, i.e. 
asset 15. There are four assets in period 5, i.e. asset 13, 
asset 15, asset 17, asset 20. 

When θ = 0, 0.25, 0.5, …, 5.75, of Model (34) will 
be obtained as the Table 3 using the forward dynamic 

 
Table 1. The optimal solution when θ  = 1 

    Asset i 
t The optimal investment proportions 

1 Asset 1 
0.2 

Asset 3 
0.1 

Asset 4 
0.2 

Asset 8 
0.2 

Asset 13 
0.2 

Asset 17 
0.2 

Asset 26 
0.2 

Asset 28 
0.2 

xf1 

−0.5

2 Asset 1 
0.2 

Asset 8 
0.2 

Asset13 
0.2 

Asset 15 
0.2 

Asset 17 
0.2 

Asset 20 
0.2 

Asset 22 
0.1 

Asset 28 
0.2 

xf2 

−0.5

3 Asset 1 
0.2 

Asset 4 
0.2 

Asset 8 
0.1 

Asset 12 
0.2 

Asset 13 
0.2 

Asset 15 
0.2 

Asset 17 
0.2 

Asset 28 
0.2 

xf3 

−0.5

4 Asset 1 
0.2 

Asset 8 
0.2 

Asset12 
0.2 

Asset 13 
0.2 

Asset 15 
0.2 

Asset 17 
0.2 

Asset 26 
0.1 

Asset 28 
0.2 

xf4 

−0.5

5 Asset 1 
0.2 

Asset 8 
0.2 

Asset12 
0.2 

Asset 13 
0.2 

Asset 15 
0.2 

Asset 17 
0.2 

Asset 20 
0.2 

Asset 28 
0.1 

xf5 

−0.5
 

Table 2. The optimal solution when θ  = 3.5 

    Asset i 
t The optimal investment proportions 

1 Asset 3 
0.2 

Asset 17 
0.2 

Asset 22 
0.2 

Asset 25 
0.2 

xf1 
0.2 

otherwise 
asset 0    

2 Asset 15 
0.2 

Asset 17 
0.2 

Asset 24 
0.2 

Asset 30 
0.2 

xf2 
0.2 

otherwise 
asset 0    

3 Asset 3 
0.2 

Asset 15 
0.2 

Asset 24 
0.2 

xf3 
0.4 

otherwise 
asset 0 

otherwise 
asset 0    

4 Asset 6 
0.2 

Asset 8 
0.2 

Asset 15 
0.2 

Asset 20 
0.2 

Asset 25 
0.2 

xf4 
0 

otherwise 
asset 0   

5 Asset 8 
0.1 

Asset 13 
0.2 

Asset15 
0.2 

Asset 17 
0.2 

Asset 20 
0.2 

Asset 22 
0.2 

Asset 25 
0.2 

Asset 30 
0.2 

xf5 

−0.5
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programming method. 
Where W6 is denoted the terminal wealth of the 

portfolio. 
From Table 3, the Figure 1 which reflect the rela-

tionship between the preference coefficients θ and the 
terminal wealth of the Model (34) can be obtained as 
follows. 

In the used data sets, the experiments in this paper 
correspond to the values of θ in the interval [0, 5.75]. It 
can be seen that, as will be seen in Fig. 1, the terminal 
wealth becomes smaller, when preference coefficient θ 
which 0 ≤ θ ≤ 5.5, become larger, the terminal wealth is 
same, when 5.5 ≤ θ ≤ 6; which reflects the influence of 
preference coefficient θ on portfolio selection.  

6.  CONCLUSIONS 

In this paper, we consider the multi-period portfo-
lio selection problem in uncertain environment. We use 
the uncertain mean value and the absolute deviation to 
measure the return and the risk of the multiperiod port-
folio, respectively. A new multi-period portfolio optimi-
zation models with transaction cost, borrowing constra-
ints and threshold constraints are proposed. Based on the 
uncertain theories, the proposed model is transformed 
into a dynamic optimization problem. Because of the 
transaction cost, the multiperiod portfolio selection model 
is a dynamic optimization problem with path dependence. 
The forward dynamic programming method is designed 
to obtain the optimal portfolio strategy. Finally, an exam-

ples is given to illustrate the behavior of the proposed 
model and the designed algorithm using real data from 
the Shanghai Stock Exchange. 
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<Appendix A> 

The codes of thirty stocks are respectively S1 (600000), S2 (600005), S3 (600015), S4 (600016), S5 (600019), S6 (600028), S7 
(600030), S8 (600036), S9 (600048), S10 (600050), S11 (600104), S12 (600362), S13 (600519), S14 (600900), S15 (601088), S16 
(601111), S17 (601166), S18 (601168), S19 (601318), S20 (601328), S21 (601390), S22 (601398), S23 (601600), S24 (601601), 
S25 (601628), S26 (601857), S27 (601919), S28 (601939), S29 (601988), S30 (601998). The triangle uncertain distributions,  
ξit = (ait, bit, cit),of the return rates of assets at each period can be obtained as shown in Table 4.1 to Table 4.10. 
 

Table 4.1 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 1 Asset 2 Asset 3 

1 0.0381 0.1430 0.2586 0.0093 0.0750 0.2414 0.0251 0.1083 0.1683 
2 0.0568 0.1449 0.2585 0.0105 0.0813 0.2413 0.0404 0.1085 0.1688 
3 0.0577 0.1458 0.2585 0.0191 0.0857 0.2413 0.0414 0.1139 0.1687 
4 0.0896 0.1516 0.2586 0.0351 0.0930 0.2413 0.0592 0.1152 0.1692 
5 0.0923 0.1532 0.2586 0.0391 0.1053 0.2412 0.0602 0.1172 0.1688 
 

Table 4.2 The fuzzy return rates on assets of five periods investment 

     Asset t 
i Asset 4 Asset 5 Asset 6 

1 0.0441 0.1172 0.1985 0.001 0.0801 0.1417 0.0429 0.1064 0.1680 
2 0.0460 0.1203 0.1985 0.0075 0.0847 0.1418 0.0439 0.1073 0.1681 
3 0.0506 0.1255 0.1985 0.0397 0.0900 0.1417 0.0390 0.1083 0.1681 
4 0.0541 0.1274 0.1984 0.0399 0.0906 0.1418 0.0328 0.1091 0.1681 
5 0.0656 0.1289 0.1989 0.0431 0.0926 0.1418 0.0402 0.1129 0.1680 
 

Table 4.3 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 7 Asset 8 Asset 9 

1 0.0236 0.0798 0.2492 0.0423 0.1238 0.2261 0.0117 0.0639 0.1590 
2 0.0264 0.0907 0.2657 0.0499 0.1259 0.2262 0.0117 0.0790 0.1656 
3 0.0437 0.0992 0.2492 0.0512 0.1277 0.2262 0.0212 0.0818 0.1657 
4 0.0478 0.1029 0.2491 0.0845 0.1383 0.2261 0.0216 0.0861 0.1661 
5 0.0535 0.1069 0.2492 0.0845 0.1457 0.2262 0.0234 0.0884 0.1657 
 

Table 4.4 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 10 Asset 11 Asset 12 

1 0.0052 0.0377 0.0791 0.0172 0.0575 0.1857 0.0073 0.1243 0.3083 
2 0.0118 0.0410 0.0789 0.0189 0.0592 0.1856 0.0296 0.1303 0.3084 
3 0.0151 0.0469 0.0790 0.0295 0.0669 0.1857 0.0553 0.1380 0.3084 
4 0.0166 0.0480 0.0789 0.0324 0.0724 0.1857 0.0648 0.1491 0.3084 
5 0.0174 0.0492 0.0790 0.0288 0.0741 0.1857 0.0788 0.1540 0.3084 
 

Table 4.5 The fuzzy return rates on assets of five periods investment 

     Asset t 
i Asset 13 Asset 14 Asset 15 

1 0.0805 0.2049 0.3380 0.0154 0.0254 0.0977 0.0103 0.0893 0.2356 
2 0.0920 0.2102 0.3379 0.0063 0.0667 0.1110 0.0503 0.1518 0.2377 
3 0.0958 0.2194 0.3380 0.0137 0.0700 0.1111 0.0505 0.1538 0.2378 
4 0.0977 0.2225 0.3379 0.0216 0.0716 0.1111 0.1031 0.1565 0.2377 
5 0.1209 0.2238 0.3380 0.0322 0.0731 0.1110 0.1047 0.1600 0.2378 
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Table 4.6 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 16 Asset 17 Asset 18 

1 0.0093 0.0615 0.3434 0.0477 0.1665 0.2040 0.0018 0.1075 0.2661 
2 0.0030 0.0625 0.2931 0.0566 0.1550 0.2322 0.0046 0.1183 0.2415 
3 0.0142 0.0656 0.2932 0.0660 0.1553 0.2322 0.0184 0.1349 0.2615 
4 0.0287 0.0747 0.2932 0.0731 0.1575 0.2322 0.0242 0.1467 0.3414 
5 0.0329 0.0835 0.2931 0.1044 0.1579 0.2323 0.0542 0.1664 0.3414 
  

Table 4.7 The fuzzy return rates on assets of five periods investment 

     Asset t 
i Asset 19 Asset 20 Asset 21 

1 0.0264 0.1000 0.1896 0.0266 0.0825 0.1678 0.0019 0.0536 0.0939 
2 0.0200 0.0916 0.1550 0.0584 0.1217 0.1836 0.016 0.0704 0.1924 
3 0.0220 0.0928 0.1550 0.0598 0.1218 0.1836 0.0172 0.0838 0.1925 
4 0.0440 0.0940 0.1550 0.0727 0.1243 0.1836 0.0199 0.0880 0.1925 
5 0.0448 0.0952 0.1552 0.1002 0.1269 0.1837 0.0214 0.0917 0.1924 
 

Table 4.8 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 22 Asset 23 Asset 24 

1 0.0113 0.1083 0.1767 0.0284 0.0413 0.1162 0.0572 0.1030 0.1171 
2 0.0552 0.1170 0.1909 0.0317 0.0454 0.1494 0.0310 0.0947 0.1340 
3 0.0577 0.1200 0.1908 0.0322 0.0531 0.1494 0.0356 0.0984 0.1339 
4 0.0579 0.1235 0.1909 0.0144 0.0574 0.1495 0.0457 0.1005 0.1339 
5 0.0766 0.1254 0.1908 0.0002 0.0718 0.1495 0.0528 0.1021 0.1340 
 

Table 4.9 The fuzzy return rates on assets of five periods investment 

    Asset t 
i Asset 25 Asset 26 Asset 27 

1 0.0557 0.0989 0.1513 0.0571 0.1283 0.2379 0.0143 0.0690 0.2324 
2 0.0369 0.1021 0.1612 0.0370 0.1276 0.2539 0.0015 0.0638 0.2466 
3 0.0470 0.1037 0.1611 0.0380 0.1329 0.2539 0.0080 0.0606 0.2366 
4 0.0730 0.1044 0.1611 0.0620 0.1432 0.2537 0.0130 0.0662 0.2356 
5 0.0847 0.1090 0.1611 0.0668 0.1445 0.2538 0.0108 0.0619 0.2266 
 

Table 4.10 The fuzzy return rates on assets of five periods investment 

     Asset t 
i Asset 28 Asset 29 Asset 30 

1 0.0823 0.1551 0.2549 0.0361 0.0994 0.1471 0.0419 0.1074 0.1928 
2 0.0593 0.1382 0.2351 0.0482 0.1123 0.1621 0.0401 0.1037 0.1475 
3 0.0716 0.1395 0.2351 0.0486 0.1134 0.1622 0.0403 0.1048 0.1474 
4 0.0647 0.1426 0.2350 0.0541 0.1157 0.1621 0.0486 0.1060 0.1474 
5 0.0706 0.1470 0.2350 0.0563 0.1175 0.1621 0.0711 0.1061 0.1474 



Zhang: Industrial Engineering & Management Systems 
Vol 15, No 1, March 2016, pp.63-76, © 2016 KIIE 76
  

 

<Appendix B> 

According Table 4.1 to Table 4.10, and Eq. (25), ADt(Rit) (i = 1, …, 30; t = 1, …, 5) can be obtained as shown in Ta-
ble 5.1 to Table 5.2. 

 
Table 5.1 The uncertain absolute deviation of assets of five periods investment 

     Asset t 
i Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 

1 0.0551 0.0599 0.0232 0.0386 0.0179 0.0280 0.0588 0.0461 
2 0.0506 0.0593 0.0268 0.0381 0.0183 0.0282 0.0620 0.0443 
3 0.0504 0.0571 0.0261 0.0331 0.0255 0.0263 0.0532 0.0439 
4 0.0428 0.0533 0.0333 0.0340 0.0255 0.0245 0.0521 0.0358 
5 0.0422 0.0516 0.0330 0.0395 0.0259 0.0258 0.0507 0.0356 
 

Table 5.2 The credibilistic absolute deviation of assets of five periods investment 

     Asset t 
i Asset 9 Asset 10 Asset 11 Asset 12 Asset 13 Asset 14 Asset 15 Asset 16 

1 0.0374 0.0185 0.0440 0.0760 0.0563 0.0228 0.0573 0.0894 
2 0.0386 0.0168 0.0435 0.0708 0.0615 0.0143 0.0360 0.0765 
3 0.0363 0.0160 0.0408 0.0647 0.0589 0.0150 0.0357 0.0740 
4 0.0362 0.0156 0.0398 0.0620 0.0588 0.0162 0.0399 0.0704 
5 0.0356 0.0123 0.0405 0.0587 0.0543 0.0195 0.0335 0.0688 
 

Table 5.3 The credibilistic absolute deviation of assets of five periods investment 

     Asset t 
i Asset 17 Asset 18 Asset 19 Asset 20 Asset21 Asset 22 Asset 23 Asset 24 

1 0.0285 0.0666 0.0409 0.0356 0.0119 0.0229 0.0240 0.0230 
2 0.0361 0.0592 0.0338 0.0342 0.0453 0.0339 0.0319 0.0197 
3 0.0393 0.0608 0.0217 0.0349 0.0443 0.0333 0.0311 0.0203 
4 0.0417 0.0801 0.0278 0.0278 0.0435 0.0333 0.0346 0.0229 
5 0.0322 0.0735 0.0269 0.0214 0.0430 0.0287 0.0373 0.0255 
 

Table 5.4 The credibilistic absolute deviation of assets of five periods investment 

     Asset t 
i Asset 25 Asset 26 Asset 27 Asset 28 Asset 29 Asset 30 

1 0.0240 0.0456 0.0568 0.0434 0.0279 0.0379 
2 0.0254 0.0545 0.0638 0.0441 0.0273 0.0233 
3 0.0285 0.0542 0.0599 0.0411 0.0272 0.0271 
4 0.0224 0.0482 0.0581 0.0426 0.0288 0.0257 
5 0.0196 0.0470 0.0564 0.0411 0.0292 0.0191 

 
 

 
 
 


